
CSE 311: Foundations of Computing

Lecture 27: Uncountable Sets, Uncomputable Functions

[proved on page 86 of Volume II of Russell and

Whitehead’s “Principia Mathematica”:

“The above proposition is occasionally useful.”]

Last time: Countable sets

A set � is countable iff we can order the elements of � as

� = {��, ��, ��, … }

Countable sets:

ℕ - the natural numbers

ℤ - the integers

ℚ - the rationals

Σ∗- the strings over any finite Σ

The set of all Java programs

Shown

by

“dovetailing”

Not every set is countable

Theorem [Cantor]:

The set of real numbers between 0 and 1 is not countable.

Proof will be by contradiction. Using a new method

called diagonalization.

Real numbers between 0 and 1: [0,1)

Every number between 0 and 1 has an infinite decimal

expansion:

1/2 = 0.50000000000000000000000...

1/3 = 0.33333333333333333333333...

1/7 = 0.14285714285714285714285...

�-3 = 0.14159265358979323846264...

1/5 = 0.19999999999999999999999...

= 0.20000000000000000000000...

Representation is unique except for the cases that

the decimal expansion ends in all 0’s or all 9’s.

We will never use the all 9’s representation.

Proof that [0,1) is not countable

Suppose, for the sake of contradiction, that there is a list of them:

1 2 3 4 5 6 7 8 9 ...

r1 0. 5 0 0 0 0 0 0 0

r2 0. 3 3 3 3 3 3 3 3

r3 0. 1 4 2 8 5 7 1 4

r4 0. 1 4 1 5 9 2 6 5

r5 0. 1 2 1 2 2 1 2 2

r6 0. 2 5 0 0 0 0 0 0

r7 0. 7 1 8 2 8 1 8 2

r8 0. 6 1 8 0 3 3 9 4

...

Proof that [0,1) is not countable

Suppose, for the sake of contradiction, that there is a list of them:

1 2 3 4 5 6 7 8 9 ...

r1 0. 5 0 0 0 0 0 0 0

r2 0. 3 3 3 3 3 3 3 3

r3 0. 1 4 2 8 5 7 1 4

r4 0. 1 4 1 5 9 2 6 5

r5 0. 1 2 1 2 2 1 2 2

r6 0. 2 5 0 0 0 0 0 0

r7 0. 7 1 8 2 8 1 8 2

r8 0. 6 1 8 0 3 3 9 4

...

Proof that [0,1) is not countable

Suppose, for the sake of contradiction, that there is a list of them:

1 2 3 4 5 6 7 8 9 ...

r1 0. 5 0 0 0 0 0 0 0

r2 0. 3 3 3 3 3 3 3 3

r3 0. 1 4 2 8 5 7 1 4

r4 0. 1 4 1 5 9 2 6 5

r5 0. 1 2 1 2 2 1 2 2

r6 0. 2 5 0 0 0 0 0 0

r7 0. 7 1 8 2 8 1 8 2

r8 0. 6 1 8 0 3 3 9 4

...

Flipping rule:

Only if the other driver deserves

it.

Proof that [0,1) is not countable

Suppose, for the sake of contradiction, that there is a list of them:

1 2 3 4 5 6 7 8 9 ...

r1 0. 5 0 0 0 0 0 0 0

r2 0. 3 3 3 3 3 3 3 3

r3 0. 1 4 2 8 5 7 1 4

r4 0. 1 4 1 5 9 2 6 5

r5 0. 1 2 1 2 2 1 2 2

r6 0. 2 5 0 0 0 0 0 0

r7 0. 7 1 8 2 8 1 8 2

r8 0. 6 1 8 0 3 3 9 4

...

Flipping rule:

If digit is 5, make it 1.

If digit is not 5, make it 5.

1

5

5

5

5

5

1

5

Proof that [0,1) is not countable

Suppose, for the sake of contradiction, that there is a list of them:

1 2 3 4 5 6 7 8 9 ...

r1 0. 5 0 0 0 0 0 0 0

r2 0. 3 3 3 3 3 3 3 3

r3 0. 1 4 2 8 5 7 1 4

r4 0. 1 4 1 5 9 2 6 5

r5 0. 1 2 1 2 2 1 2 2

r6 0. 2 5 0 0 0 0 0 0

r7 0. 7 1 8 2 8 1 8 2

r8 0. 6 1 8 0 3 3 9 4

...

Flipping rule:

If digit is 5, make it 1.

If digit is not 5, make it 5.

1

5

5

5

5

5

1

5

If diagonal element is �. ��������������� ⋯ then the flipped diagonal

number call it � = �. �������������������� ⋯ is also a real number in [0,1).

Proof that [0,1) is not countable

Suppose, for the sake of contradiction, that there is a list of them:

1 2 3 4 5 6 7 8 9 ...

r1 0. 5 0 0 0 0 0 0 0

r2 0. 3 3 3 3 3 3 3 3

r3 0. 1 4 2 8 5 7 1 4

r4 0. 1 4 1 5 9 2 6 5

r5 0. 1 2 1 2 2 1 2 2

r6 0. 2 5 0 0 0 0 0 0

r7 0. 7 1 8 2 8 1 8 2

r8 0. 6 1 8 0 3 3 9 4

...

Flipping rule:

If digit is 5, make it 1.

If digit is not 5, make it 5.

1

5

5

5

5

5

1

5

If diagonal element is �. ��������������� ⋯ then the flipped diagonal

number call it � = �. �������������������� ⋯ is also a real number in [0,1).

For every � ≥ �:

�� ≠ � = �. �������������������� ⋯

because the numbers differ on

the �-th digit!

Proof that [0,1) is not countable

Suppose, for the sake of contradiction, that there is a list of them:

1 2 3 4 5 6 7 8 9 ...

r1 0. 5 0 0 0 0 0 0 0

r2 0. 3 3 3 3 3 3 3 3

r3 0. 1 4 2 8 5 7 1 4

r4 0. 1 4 1 5 9 2 6 5

r5 0. 1 2 1 2 2 1 2 2

r6 0. 2 5 0 0 0 0 0 0

r7 0. 7 1 8 2 8 1 8 2

r8 0. 6 1 8 0 3 3 9 4

...

Flipping rule:

If digit is 5, make it 1.

If digit is not 5, make it 5.

1

5

5

5

5

5

1

5

So the list is incomplete, which is a contradiction.

Thus the real numbers between 0 and 1 are not countable: “uncountable”

For every � ≥ �:

�� ≠ � = �. �������������������� ⋯

because the numbers differ on

the �-th digit!

A note on this proof

• The set of rational numbers in [0,1) also have

decimal representations like this

– The only difference is that rational numbers always

have repeating decimals in their expansions 0.33333...

or .25000000...

• So why wouldn’t the same proof show that this set

of rational numbers is uncountable?

– Given any listing (even one that is good like the

dovetailing listing) we could create the flipped diagonal

number � as before

– However, � would not have a repeating decimal

expansion and so wouldn’t be a rational #

It would not be a “missing” number, so no contradiction.

The set of all functions ∶ ℕ → {0, … , 9} is uncountable

1 2 3 4 5 6 7 8 9 ...

f1 0. 5 0 0 0 0 0 0 0

f2 0. 3 3 3 3 3 3 3 3

f3 0. 1 4 2 8 5 7 1 4

f4 0. 1 4 1 5 9 2 6 5

f5 0. 1 2 1 2 2 1 2 2

f6 0. 2 5 0 0 0 0 0 0

f7 0. 7 1 8 2 8 1 8 2

f8 0. 6 1 8 0 3 3 9 4

...

Supposed listing of all the functions:

The set of all functions ∶ ℕ → {0, … , 9} is uncountable

1 2 3 4 5 6 7 8 9 ...

f1 0. 5 0 0 0 0 0 0 0

f2 0. 3 3 3 3 3 3 3 3

f3 0. 1 4 2 8 5 7 1 4

f4 0. 1 4 1 5 9 2 6 5

f5 0. 1 2 1 2 2 1 2 2

f6 0. 2 5 0 0 0 0 0 0

f7 0. 7 1 8 2 8 1 8 2

f8 0. 6 1 8 0 3 3 9 4

...

Flipping rule:

If $� � = �, set % � = �

If $� � ≠ �, set % � = �

1

5

5

5

5

5

1

5

The set of all functions ∶ ℕ → {0, … , 9} is uncountable

Supposed listing of all the functions:

The set of all functions ∶ ℕ → {0, … , 9} is uncountable

1 2 3 4 5 6 7 8 9 ...

f1 0. 5 0 0 0 0 0 0 0

f2 0. 3 3 3 3 3 3 3 3

f3 0. 1 4 2 8 5 7 1 4

f4 0. 1 4 1 5 9 2 6 5

f5 0. 1 2 1 2 2 1 2 2

f6 0. 2 5 0 0 0 0 0 0

f7 0. 7 1 8 2 8 1 8 2

f8 0. 6 1 8 0 3 3 9 4

...

1

5

5

5

5

5

1

5

For all �, we have % � ≠ $�(�). Therefore % ≠ $� for any � and the

list is incomplete! ⇒ $ $: ℕ → {0,1, … , 9}} is not countable

Supposed listing of all the functions:

Flipping rule:

If $� � = �, set % � = �

If $� � ≠ �, set % � = �

Uncomputable functions

We have seen that:

– The set of all (Java) programs is countable

– The set of all functions ∶ ℕ → {0, … , 9} is not countable

So: There must be some function ∶ ℕ → {0, … , 9} that is not

computable by any program!

Interesting… maybe.

Can we come up with an explicit function that is

uncomputable?

Recall our language picture

All

Context-Free

Regular

Finite

0*
DFA

NFA

Regex

Binary Palindromes

{001, 10, 12}

Java

Some Notation

We’re going to be talking about Java code.

CODE(P) will mean “the code of the program P”

So, consider the following function:

public String P(String x) {

return new String(Arrays.sort(x.toCharArray());

}

What is P(CODE(P))?

“((()))..;AACPSSaaabceeggghiiiilnnnnnooprrrrrrrrrrrsssttttttuuwxxyy{}”

The Halting Problem

Given: - CODE(P) for any program P

- input x

Output: true if P halts on input x

false if P does not halt on input x

It turns out that it isn’t possible to write a

program that solves the Halting Problem!

Proof by contradiction

• Suppose that H is a Java program that solves the

Halting problem. Then we can write this program:

public static void D(x) {

if (H(x,x) == true) {

while (true); /* don’t halt */

}

else {

return; /* halt */

}

}

• Does D(CODE(D)) halt?

H solves the halting problem implies that
H(CODE(D),x) is true iff D(x) halts, H(CODE(D),x) is false iff not

Suppose D(CODE(D)) halts.

Then, we must be in the second case of the if.

So, H(CODE(D), CODE(D)) is false

Which means D(CODE(D)) doesn’t halt

Suppose D(CODE(D)) doesn’t halt.

Then, we must be in the first case of the if.

So, H(CODE(D), CODE(D)) is true.

Which means D(CODE(D)) halts.

The Halting Problem

Given: - CODE(P) for any program P
- input x

Output: true if P halts on input x
false if P does not halt on input x

H solves the halting problem implies that
H(CODE(D),x) is true iff D(x) halts, H(CODE(D),x) is false iff not

Suppose D(CODE(D)) halts.

Then, we must be in the second case of the if.

So, H(CODE(D), CODE(D)) is false

Which means D(CODE(D)) doesn’t halt

Suppose D(CODE(D)) doesn’t halt.

Then, we must be in the first case of the if.

So, H(CODE(D), CODE(D)) is true.

Which means D(CODE(D)) halts.

public static void D(x) {

if (H(x,x) == true) {

while (true); /* don’t halt */

}

else {

return; /* halt */

}

}

Does D(CODE(D)) halt?

H solves the halting problem implies that
H(CODE(D),x) is true iff D(x) halts, H(CODE(D),x) is false iff not

Suppose that D(CODE(D)) halts.

Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true

Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.

Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false

Which by the definition of D means D(CODE(D)) halts

public static void D(x) {

if (H(x,x) == true) {

while (true); /* don’t halt */

}

else {

return; /* halt */

}

}

Does D(CODE(D)) halt?

H solves the halting problem implies that
H(CODE(D),x) is true iff D(x) halts, H(CODE(D),x) is false iff not

Suppose that D(CODE(D)) halts.

Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true

Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.

Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false

Which by the definition of D means D(CODE(D)) halts

public static void D(x) {

if (H(x,x) == true) {

while (true); /* don’t halt */

}

else {

return; /* halt */

}

}

Does D(CODE(D)) halt?

H solves the halting problem implies that
H(CODE(D),x) is true iff D(x) halts, H(CODE(D),x) is false iff not

Suppose that D(CODE(D)) halts.

Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true

Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.

Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false

Which by the definition of D means D(CODE(D)) halts

public static void D(x) {

if (H(x,x) == true) {

while (true); /* don’t halt */

}

else {

return; /* halt */

}

}

Does D(CODE(D)) halt?

Contradiction!

Done

• We proved that there is no computer

program that can solve the Halting Problem.

– There was nothing special about Java*
[Church-Turing thesis]

• This tells us that there is no compiler that can check our

programs and guarantee to find any infinite loops they

might have.

Connection to diagonalization

<P1> <P2> <P3> <P4> <P5> <P6> Some possible inputs x

P1

P2

P3

P4

P5

P6

P7

P8

P9

.

.

0 1 1 0 1 1 1 0 0 0 1 ...

1 1 0 1 0 1 1 0 1 1 1 ...

1 0 1 0 0 0 0 0 0 0 1 ...

0 1 1 0 1 0 1 1 0 1 0 ...

0 1 1 1 1 1 1 0 0 0 1 ...

1 1 0 0 0 1 1 0 1 1 1 ...

1 0 1 1 0 0 0 0 0 0 1 ...

0 1 1 1 1 0 1 1 0 1 0 ...

.

.

(P,x) entry is 1 if program P halts on input x

and 0 if it runs forever

Write <P> for CODE(P)

Connection to diagonalization

<P1> <P2> <P3> <P4> <P5> <P6> Some possible inputs x

P1

P2

P3

P4

P5

P6

P7

P8

P9

.

.

0 1 1 0 1 1 1 0 0 0 1 ...

1 1 0 1 0 1 1 0 1 1 1 ...

1 0 1 0 0 0 0 0 0 0 1 ...

0 1 1 0 1 0 1 1 0 1 0 ...

0 1 1 1 1 1 1 0 0 0 1 ...

1 1 0 0 0 1 1 0 1 1 1 ...

1 0 1 1 0 0 0 0 0 0 1 ...

0 1 1 1 1 0 1 1 0 1 0 ...

.

.

(P,x) entry is 1 if program P halts on input x

and 0 if it runs forever

1

0

0

1

0

0

1

0

Write <P> for CODE(P)

Behavior of program % would be like

the flipped diagonal, so it can’t be in

the list of all programs.

Contradiction!

