CSE 311: Foundations of Computing

Lecture 27: Uncountable Sets, Uncomputable Functions

AUTHOR KATHARINE GATES RECENTLY ATTEMPTED TO MAKE A CHART OF ALL SEXUAL FETISHES.

LITTLE DID SHE KNOW THAT RUSSELL AND WHITEHEAD HAD ALREADY FAILED AT THIS SAME TASK.

```
*54.43.  \vdash :. \alpha, \beta \in 1 . \mathfrak{I} : \alpha \cap \beta = \Lambda . \equiv . \alpha \cup \beta \in 2 

Dem.

 \vdash . *54.26 . \mathfrak{I} \vdash :. \alpha = \iota^{t}x . \beta = \iota^{t}y . \mathfrak{I} : \alpha \cup \beta \in 2 . \equiv . x \neq y .

[*51.231]

 \equiv . \iota^{t}x \cap \iota^{t}y = \Lambda .

[*13.12]

 \vdash . (1) . *11.11.35 . \mathfrak{I} 

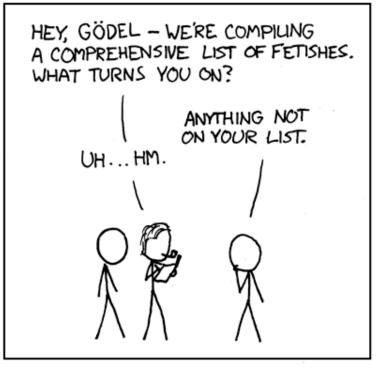
 \vdash :. (\mathfrak{I}x, y) . \alpha = \iota^{t}x . \beta = \iota^{t}y . \mathfrak{I} : \alpha \cup \beta \in 2 . \equiv . \alpha \cap \beta = \Lambda (2)

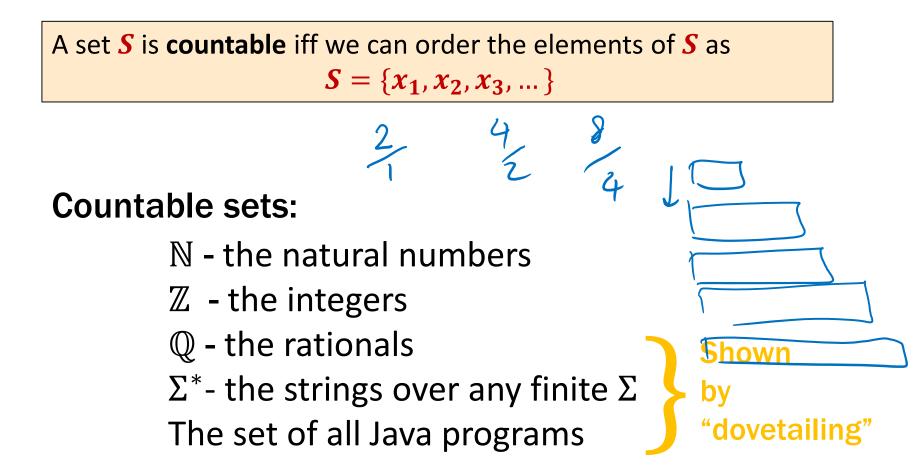
 \vdash . (2) . *11.54 . *52.1 . \mathfrak{I} \vdash . \operatorname{Prop}
```

From this proposition it will follow, when arithmetical addition has been defined, that 1 + 1 = 2.

[proved on page 86 of Volume II of Russell and Whitehead's "Principia Mathematica":

"The above proposition is occasionally useful."]





Theorem [Cantor]: The set of real numbers between 0 and 1 is **not** countable.

Proof will be by contradiction. Using a new method called diagonalization.

Every number between 0 and 1 has an infinite decimal expansion: $\chi = 0.17339$

- 1/7 = 0.14285714285714285714285... $9_{x} = 1.800 c$
- π -3 = 0.14159265358979323846264... $\star = 0.2 \ O$
- 1/5 = 0.19999999999999999999999...

= 0.20000000000000000000000...

Representation is unique except for the cases that the decimal expansion ends in all 0's or all 9's. We will never use the all 9's representation.

		1	2	3	4	5	6	7	8	9	
r ₁	0.	5	0	0	0	0	0	0	0	•••	•••
r ₂	0.	3	3	3	3	3	3	3	3	•••	•••
r ₃	0.	1	4	2	8	5	7	1	4	•••	•••
r ₄	0.	1	4	1	5	9	2	6	5	•••	•••
r ₅	0.	1	2	1	2	2	1	2	2	•••	•••
r ₆	0.	2	5	0	0	0	0	0	0	•••	•••
r ₇	0.	7	1	8	2	8	1	8	2	•••	•••
r ₈	0.	6	1	8	0	3	3	9	4	•••	•••

		1	2	3	4	5	6	7	8	9	•••
r ₁	0.	5	0	0	0	0	0	0	0	•••	•••
r ₂	0.	3	3	3	3	3	3	3	3	•••	•••
r ₃	0.	1	4	2	8	5	7	1	4	•••	•••
r ₄	0.	1	4	1	5	9	2	6	5	•••	•••
r ₅	0.	1	2	1	2	2	1	2	2	•••	•••
r ₆	0.	2	5	0	0	0	0	0	0	•••	•••
r ₇	0.	7	1	8	2	8	1	8	2	•••	•••
r ₈	0.	6	1	8	0	3	3	9	4	•••	•••

r ₁	0.	1 5	2 0	3 0	4 0		ping r y if the		r drive	er dese	erves
r ₂	0.	3	3	3	3	it.					
r ₃	0.	1	4	2	8	5	7	1	4	•••	•••
r ₄	0.	1	4	1	5	9	2	6	5	•••	•••
r ₅	0.	1	2	1	2	2	1	2	2	•••	•••
r ₆	0.	2	5	0	0	0	0	0	0	•••	•••
r ₇	0.	7	1	8	2	8	1	8	2	•••	•••
r ₈	0.	6	1	8	0	3	3	9	4	•••	•••

r ₁ r ₂	0. 0.	1 5 1 3	2 0 3 ⁵	3 0 3	4 0 3	If dig	ping ru git is 5 , git is no	make	e it 1 . nake it	5.	
r ₃	0.	1	4	2 ⁵	8	5	7	1	4	•••	•••
r ₄	0.	1	4	1	511	9	2	6	5	•••	•••
r ₅	0.	1	2	1	2	255	1	2	2	•••	•••
r ₆	0.	2	5	0	0	0	0 ⁵	0	0	•••	•••
r ₇	0.	7	1	8	2	8	1	8	2	•••	•••
r ₈	0.	6	1	8	0	3 ໌	3	9	4 ⁵	•••	•••
	••••	\ 	5	5)	5	5	5	<u>۲</u>	•••	

Suppose, for the sake of contradiction, that there is a list of them:

r ₁ r ₂	0. 0.	1 5 ¹ 3	2 0 3 ⁵	3 0 3	4 0 3	lf dig	ping ru git is 5 , git is no	make		t 5 .	
r ₃	0.	1	4	2 ⁵	8	5	7	1	4	•••	•••
r ₄	0.	1	4	1	5 ¹	9	2	6	5	•••	•••
r ₅	0.	1	2	1	2	2 ⁵	1	2	2	•••	•••
r ₆	0.	2	5	0	0	0	0 ⁵	0	0	•••	•••
r ₇	0.	7	1	8	2	8	1	8	2	•••	•••

If diagonal element is $0. x_{11}x_{22}x_{33}x_{44}x_{55} \cdots$ then the flipped diagonal number call it $d = 0. \hat{x}_{11}\hat{x}_{22}\hat{x}_{33}\hat{x}_{44}\hat{x}_{55} \cdots$ is also a real number in [0,1).

Suppose, for the sake of contradiction, that there is a list of them:

r ₁ r ₂	0. 0.	1 5 ¹ 3	2 0 3 ⁵	3 0 3	4 0 3	lf dig	ping ru git is 5 , git is no	, make		t 5 .	
r ₃	0.	1	4	2 ⁵	8	5	7	1	4	•••	
r ₄	0.	1	4	1	5 ¹	9	2	6	5	•••	•••
	every n					2 ⁵	1	2	2	•••	•••
		0 . \hat{x}_{11}			55 ···	0	0 ⁵	0	0	•••	•••
beca	use the	e numb	ers diff	er on				5			
the r	≀ -th dig	git!				8	1	8	2	•••	•••

If diagonal element is $0. x_{11} x_{22} x_{33} x_{44} x_{55} \cdots$ then the flipped diagonal number call it $d = 0. \hat{x}_{11} \hat{x}_{22} \hat{x}_{33} \hat{x}_{44} \hat{x}_{55} \cdots$ is also a real number in [0,1).

Suppose, for the sake of contradiction, that there is a list of them:

r ₁ r ₂	0. 0.	1 5 ¹ 3	2 0 3 ⁵	3 0 3	4 0 3	lf dig	ping ru git is 5 git is n	, make		t 5 .	
r ₃	0.	1	4	2 ⁵	8	5	7	1	4	•••	
r ₄	0.	1	4	1	5 ¹	9	2	6	5	•••	•••
	every n					2 ⁵	1	2	2	•••	•••
		$0.\widehat{x}_{11}$ e numbe			55	0	0 ⁵	0	0	•••	•••
	ı -th di					8	1	8 ⁵	2	•••	•••

So the list is incomplete, which is a contradiction.

Thus the real numbers between 0 and 1 are not countable: "uncountable"

- The set of rational numbers in [0,1) also have decimal representations like this
 - The only difference is that rational numbers always have repeating decimals in their expansions 0.33333... or .25000000...
- So why wouldn't the same proof show that this set of rational numbers is uncountable?

- The set of rational numbers in [0,1) also have decimal representations like this
 - The only difference is that rational numbers always have repeating decimals in their expansions 0.33333... or .25000000...
- So why wouldn't the same proof show that this set of rational numbers is uncountable?
 - Given any listing (even one that is good like the dovetailing listing) we could create the flipped diagonal number *d* as before

- The set of rational numbers in [0,1) also have decimal representations like this
 - The only difference is that rational numbers always have repeating decimals in their expansions 0.33333... or .25000000...
- So why wouldn't the same proof show that this set of rational numbers is uncountable?
 - Given any listing (even one that is good like the dovetailing listing) we could create the flipped diagonal number *d* as before
 - However, *d* would not have a repeating decimal expansion and so wouldn't be a rational #

It would not be a "missing" number, so no contradiction.

The set of all functions $f : \mathbb{N} \rightarrow \{0, ..., 9\}$ is uncountable

The set of	all f	unct	ions	f: I	$\mathbb{N} \to \{$	[0,	.,9}	is ur	ncou	ntable
Supposed	l listir	ng of a	ll the	funct	ions:					
	1	2	3	4	5	6	7	8	9	•••
f ₁	5	0	0	0	0	0	0	0	•••	•••
f ₂	3	3	3	3	3	3	3	3	•••	•••
f ₃	1	4	2	8	5	7	1	4	•••	•••
f ₄	1	4	1	5	9	2	6	5	•••	•••
$5f_5$	1	2	1	2	2	1	2	2	•••	•••
f ₆	2	5	0	0	0	0	0	0	•••	•••
f ₇	7	1	8	2	8	1	8	2	•••	•••
f ₈	6	1_	8	0	3	3	9	4	•••	•••
•••	•••	+ ((i) 	•••	•••	•••	•••	•••	•••	

Supposed listing of all the functions:

		0								
	1	2	3	4	Flippi	ng rule	9:			
f ₁	5 ¹	0	0	0		n) = !		D(n)	= 1	
f ₂	3	3 ⁵	3	3	If $f_n($	$n) \neq !$	5, set	D(n)	= 5	J
f ₃	1	4	2 ⁵	8	5	7	1	4	•••	
f ₄	1	4	1	5 ¹	9	2	6	5	•••	•••
f ₅	1	2	1	2	2 ⁵	1	2	2	•••	•••
f ₆	2	5	0	0	0	0 ⁵	0	0	•••	•••
f ₇	7	1	8	2	8	1	8	2	•••	•••
f ₈	6	1	8	0	3	3	9	4 ⁵	•••	•••
	•••		••••	•••	•••	•••	•••	•••	•••	

Supposed listing of all the functions:

f ₁	1 5 ¹	2 0	3 0	4 0	Flippin If $f_n(n)$			D (n)	= 1	
f ₂	3	35	3	3	If $f_n(x)$	$n) \neq 5$	5 , set	D (n)	= 5	J
f ₃	1	4	2 ⁵	8	5	7	1	4	•••	
f ₄	1	4	1	5 ¹	9	2	6	5	•••	•••
f ₅	1	2	1	2	2 ⁵	1	2	2	•••	•••
f ₆	2	5	0	0	0	0 ⁵	0	0	•••	•••
f ₇	7	1	8	2	8	1	8	2	•••	•••

For all n, we have $D(n) \neq f_n(n)$. Therefore $D \neq f_n$ for any n and the list is incomplete! $\Rightarrow \{f \mid f : \mathbb{N} \rightarrow \{0, 1, \dots, 9\}\}$ is **not** countable

We have seen that:

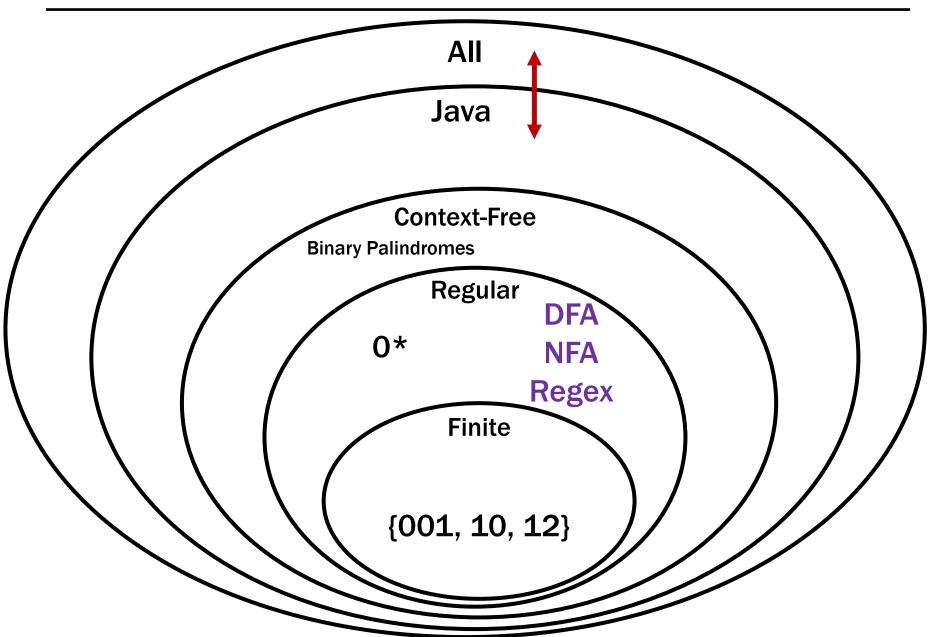
- The set of all (Java) programs is countable
- The set of all functions $f : \mathbb{N} \to \{0, \dots, 9\}$ is not countable

So: There must be some function $f : \mathbb{N} \to \{0, ..., 9\}$ that is not computable by any program!

Interesting... maybe.

Can we come up with an explicit function that is uncomputable?

Recall our language picture



We're going to be talking about Java code.

CODE(P) will mean "the code of the program **P**"

So, consider the following function:
 public String P(String x) {
 return new String(Arrays.sort(x.toCharArray());
 }

What is **P(CODE(P))**?

"(((()))..;AACPSSaaabceeggghiiiilnnnnnooprrrrrrrrssstttttuuwxxyy{}"

Given: - CODE(**P**) for any program **P**

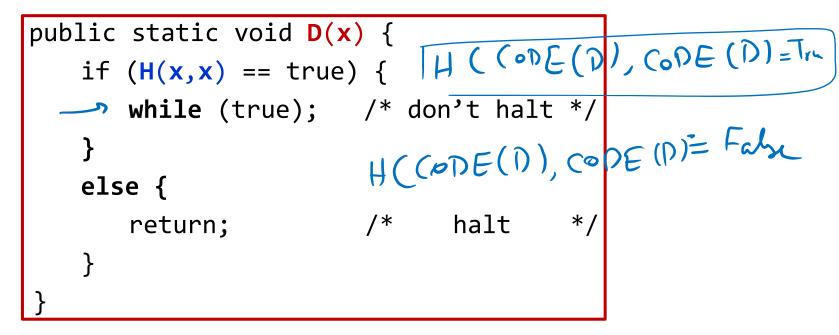
- input **x**

Output: true if P halts on input x false if P does not halt on input x

It turns out that it isn't possible to write a program that solves the Halting Problem!

Proof by contradiction

• Suppose that **H** is a Java program that solves the Halting problem. Then we can write this program:



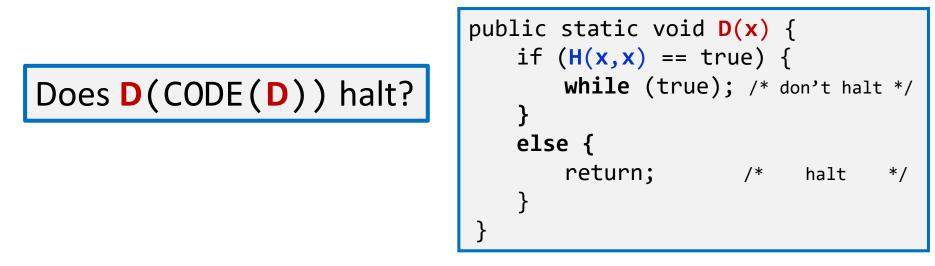
• Does D(CODE(D)) halt?

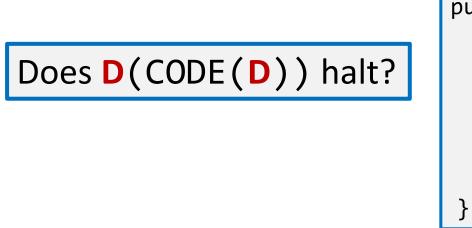
Halting Problem

Given: - CODE(P) for any program P - input x

Output: true if P halts on input x false if P does not halt on input x

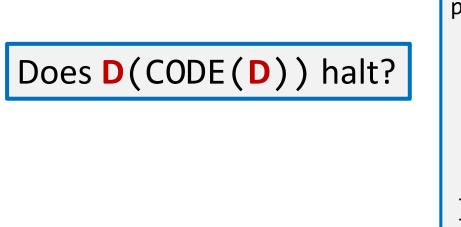
H solves the halting problem implies that H(CODE(D),x) is true iff D(x) halts, H(CODE(D),x) is false iff not





```
public static void D(x) {
    if (H(x,x) == true) {
        while (true); /* don't halt */
    }
    else {
        return; /* halt */
    }
}
```

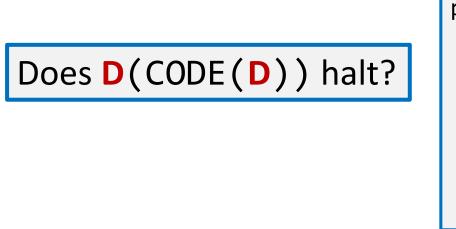
Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that
H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn't halt



```
public static void D(x) {
    if (H(x,x) == true) {
        while (true); /* don't halt */
    }
    else {
        return; /* halt */
    }
}
```

```
Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that
H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn't halt
```

Suppose that D(CODE(D)) doesn't halt.
Then, by definition of H it must be that
H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE(D)) halts



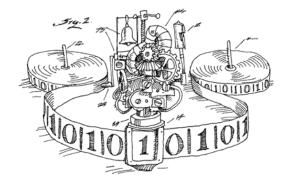
```
public static void D(x) {
    if (H(x,x) == true) {
        while (true); /* don't halt */
    }
    else {
        return; /* halt */
    }
}
```

Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that
H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn't halt

Suppose that D(CODE(D)) doesn't halt.
Then, by definition of H it must be that
H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE(D)) halts

- We proved that there is no computer program that can solve the Halting Problem.
 - There was nothing special about Java*

[Church-Turing thesis]

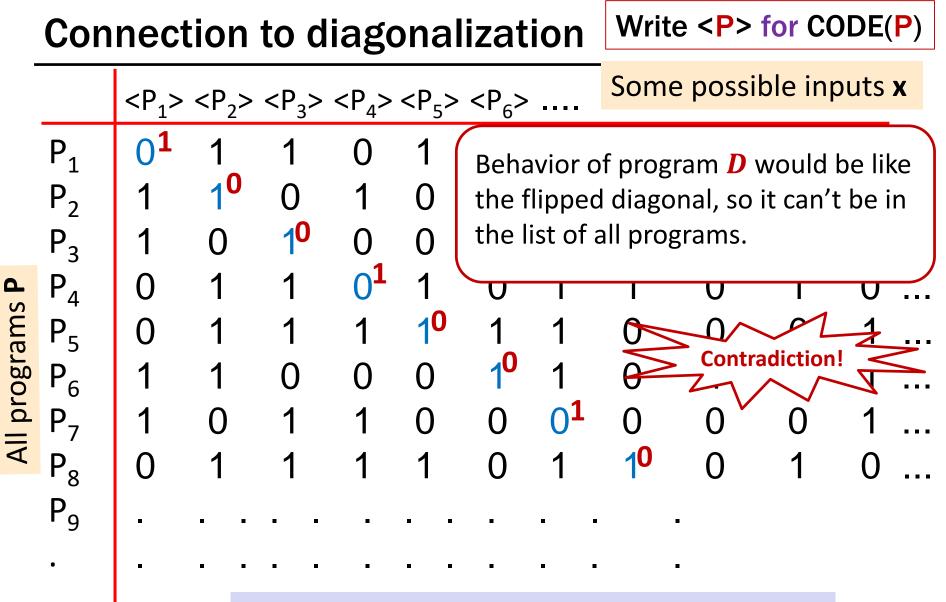


 This tells us that there is no compiler that can check our programs and guarantee to find any infinite loops they might have.

	Con	nect	ion	to d	iago	onal	izat	ion	Write	e < P >	for CC	DDE(P))
-		<p<sub>1></p<sub>	<p<sub>2></p<sub>	<p<sub>3></p<sub>	<p<sub>4></p<sub>	<p<sub>5></p<sub>	<p<sub>6></p<sub>		Some	e possi	ble inp	outs <mark>x</mark>	
	P ₁	0	1	1	0	1	1	1	0	0	0	1.	
	P_2	1	1	0	1	0	1	1	0	1	1	1.	
	P_3	1	0	1	0	0	0	0	0	0	0	1.	
S P	P_4	0	1	1	0	1	0	1	1	0	1	0.	
am	P ₅	0	1	1	1	1	1	1	0	0	0	1.	
program	P_6	1	1	0	0	0	1	1	0	1	1	1.	
All pi	P ₇	1	0	1	1	0	0	0	0	0	0	1.	
4	P_8	0	1	1	1	1	0	1	1	0	1	0.	
	Р ₉			• •	•	• •	•						
	•	L _			_		_			-			

(P,x) entry is 1 if program P halts on input x and 0 if it runs forever

•



(P,x) entry is 1 if program P halts on input x and 0 if it runs forever