
CSE 311: Foundations of Computing

Lecture 25: Pattern Matching, DFA≣NFA≣Regex

Languages vs Representations

Last time: NFA to DFA

c

a

b

0

ɛɛɛɛ

0,1

1

0

NFA

a,b

DFA

0

c

1

b

b,c

1

0

a,b,c

∅∅∅∅

1

0,1

0

0

1

1
0

Exponential Blow-up in Simulating Nondeterminism

• In general the DFA might need a state for every

subset of states of the NFA

– Power set of the set of states of the NFA

– �-state NFA yields DFA with at most �� states

– We saw an example where roughly �� is necessary

“Is the �th char from the end a 1?”

The famous “P=NP?” question asks whether a

similar blow-up is always necessary to get rid of

nondeterminism for polynomial-time algorithms

Pattern matching

• Given

– a string s of � characters

– a pattern p of � characters

– usually � ≪ �

• Find

– all occurrences of the pattern p in the string s

• Obvious algorithm:

– try to see if p matches at each of the positions in s

stop at a failed match and try matching at the next

position

pattern p = x y x y y x y x y x x

string s = x y x x y x y x y y x y x y x y y x y x y x x

x y x y y x y x y x x
string s = x y x x y x y x y y x y x y x y y x y x y x x

x y x y
string s = x y x x y x y x y y x y x y x y y x y x y x x

x y x y y x y x y x x

x y x y
string s = x y x x y x y x y y x y x y x y y x y x y x x

x
x y x y y x y x y x x

x y x y
string s = x y x x y x y x y y x y x y x y y x y x y x x

x
x y

x y x y y x y x y x x

x y x y
string s = x y x x y x y x y y x y x y x y y x y x y x x

x
x y

x y x y y
x y x y y x y x y x x

x y x y
string s = x y x x y x y x y y x y x y x y y x y x y x x

x
x y

x y x y y
x

x y x y y x y x y x x

x y x y
string s = x y x x y x y x y y x y x y x y y x y x y x x

x
x y

x y x y y
x

x y x y y x y x y x x
x y x y y x y x y x x

x y x y
string s = x y x x y x y x y y x y x y x y y x y x y x x

x
x y

x y x y y
x

x y x y y x y x y x x
x

x y x y y x y x y x x

x y x y
string s = x y x x y x y x y y x y x y x y y x y x y x x

x
x y

x y x y y
x

x y x y y x y x y x x
x

x y x
x y x y y x y x y x x

x y x y
string s = x y x x y x y x y y x y x y x y y x y x y x x

x
x y

x y x y y
x

x y x y y x y x y x x
x

x y x
x

x y x y y x y x y x x

x y x y
string s = x y x x y x y x y y x y x y x y y x y x y x x

x
x y

x y x y y
x

x y x y y x y x y x x
x

x y x
x

x
x y x y y x y x y x x

x y x y
string s = x y x x y x y x y y x y x y x y y x y x y x x

x
x y

x y x y y
x

x y x y y x y x y x x
x

x y x
x

x
x y x y y

x y x y y x y x y x x

x y x y
string s = x y x x y x y x y y x y x y x y y x y x y x x

x
x y

x y x y y
x

x y x y y x y x y x x
x

x y x
x

x
x y x y y

x
x y x y y x y x y x x

Worst-case time

�(��)

x y x y
string s = x y x x y x y x y y x y x y x y y x y x y x x

x y x y y x y x y x x

Lots of wasted work

Better pattern matching via finite automata

• Build a DFA for the pattern (preprocessing) of size

�(�)

– Keep track of the ‘longest match currently active’

– The DFA will have only � + 1 states

• Run the DFA on the string � steps

• Obvious construction method for DFA will be

�(��) but can be done in �(�) time.

• Total �(� + �) time

Building a DFA for the pattern

pattern p=x y x y y x y x y x x

x y x y y x y x y x x

x y x y y x y x y x x

Building a DFA for the pattern

pattern p=x y x y y x y x y x x

x

y

y

x

x

x y x y y x y x y x x

Building a DFA for the pattern

pattern p=x y x y y x y x y x x

x

y

y

y

y

x

x

x
x

x y x y y x y x y x x

Building a DFA for the pattern

pattern p=x y x y y x y x y x x

x

y

y

y

y

y

y

x

x

x

x

x

y

Generalizing

• Can search for arbitrary combinations of patterns

– Not just a single pattern

– Build NFA for pattern then convert to DFA ‘on the fly*’.

* Only add states when the input string actually needs to

use them

(Compare DFA constructed above with subset

construction for the obvious NFA.)

DFAs ≡ NFAs ≡ Regular expressions

We have shown how to build an optimal DFA for every
regular expression

– Build NFA

– Convert NFA to DFA using subset construction

– Minimize resulting DFA

Theorem: A language is recognized by a DFA (or NFA)
if and only if it has a regular expression

You need to know this fact but we won’t ask you anything
about the “only if” direction from DFA/NFA to regular
expression. For fun, we sketch the idea.

Generalized NFAs

• Like NFAs but allow

– Parallel edges

– Regular Expressions as edge labels

NFAs already have edges labeled ɛɛɛɛ or a

• An edge labeled by AAAA can be followed by reading a

string of input chars that is in the language

represented by AAAA

• Defn: A string x is accepted iff there is a path from

start to final state labeled by a regular expression

whose language contains x

Starting from an NFA

Add new start state and final state

ɛɛɛɛ

ɛɛɛɛ

ɛɛɛɛ

A

Then eliminate original states one by one,

keeping the same language, until it looks

like:

Final regular expression will be AAAA

Only two simplification rules

• Rule 1Rule 1Rule 1Rule 1: For any two states q1 and q2 with parallel

edges (possibly q1=q2), replace

• Rule 2Rule 2Rule 2Rule 2: Eliminate non-start/final state q3 by

replacing all

for every pair of states q1, q2 (even if q1=q2)

q1
q2

A

B

by
A⋃⋃⋃⋃B

q1
q2

A
B

C AB*Cq1 q3 q2 q1
q2by

Converting an NFA to a regular expression

Consider the DFA for the mod 3 sum

– Accept strings from {0,1,2}* where the digits

mod 3 sum of the digits is 0

t0 t2

t1

0

0

0

1 1

1

2

22

Splicing out a state t1

Regular expressions to add to edges

t0 t2

t1

0

0

1 1

1

2

22

t0→t1→t0 : 10*2

t0→t1→t2 : 10*1

t2→t1→t0 : 20*2

t2→t1→t2 : 20*1

0

s
ɛɛɛɛ

f

ɛɛɛɛ

Splicing out a state t1

Regular expressions to add to edges

t0 t2

0 ∪ 20*1
2 ∪ 10*1

t0→t1→t0 : 10*2

t0→t1→t2 : 10*1

t2→t1→t0 : 20*2

t2→t1→t2 : 20*1

0 ∪ 10*2

s
ɛɛɛɛ

f

ɛɛɛɛ
1 ∪ 20*2

Splicing out state t2 (and then t0)

t0 t2

R1

R1: 0 ∪ 10*2

R2: 2 ∪ 10*1

R3: 1 ∪ 20*2

R4: 0 ∪ 20*1

R5: R1 ∪ R2R4*R3

R4R2

R3

Final regular expression: R5*=

(0 ∪ 10*2 ∪ (2 ∪ 10*1)(0 ∪ 20*1)*(1 ∪ 20*2))*

f

ɛɛɛɛ

s
ɛɛɛɛ

t0

R5
f

ɛɛɛɛ

s
ɛɛɛɛ

What languages have DFAs? CFGs?

All of them?

Languages and Representations!

All

Context-Free

Regular

Finite

{001, 10, 12}

0*
DFA

NFA

Regex

Languages and Representations!

All

Context-Free

Regular

Finite

{001, 10, 12}

0*
DFA

NFA

Regex

Warmup:Warmup:Warmup:Warmup:

All finite

languages

are regular.

DFAs Recognize Any Finite Language

DFAs Recognize Any Finite Language

Construct a DFA for each string in the language.

Then, put them together using the union construction.

Languages and Machines!

All

Context-Free

Regular

Finite

{001, 10, 12}

0*
DFA

NFA

Regex

Warmup 2:Warmup 2:Warmup 2:Warmup 2:

Surprising

example here

An Interesting Infinite Regular Language

L = {xxxx∊∊∊∊ {{{{0, 1}}}}****:::: xxxx has an equal number of substrings 01 and 10}.

L is infinite.

0, 00, 000, …

L is regular. How could this be?

(It seems to be comparing counts and counting seems

hard for DFAs.)

An Interesting Infinite Regular Language

L = {xxxx∊∊∊∊ {{{{0, 1}}}}****:::: xxxx has an equal number of substrings 01 and 10}.

L is infinite.

0, 00, 000, …

L is regular. How could this be? It is just the set of binary strings

that are empty or begin and end with the same character!

s0

0

1 s4s3

0

1

01

s2s1

1

0

10

Languages and Representations!

All

Context-Free

Regular

Finite

0*
DFA

NFA

Regex

??? Main Event:Main Event:Main Event:Main Event:

Prove there is

a context-free

language

that isn’t

regular.

{001, 10, 12}

The language of “Binary Palindromes” is Context-Free

S → ε | 0 | 1 | 0S0 | 1S1

Is the language of “Binary Palindromes” Regular ?

Is the language of “Binary Palindromes” Regular ?

Intuition (NOT A PROOF!):

QQQQ: What would a DFA need to keep track of to decide the

language?

AAAA: It would need to keep track of the “first part” of the input

in order to check the second part against it

…but there are an infinite # of possible first parts and we

only have finitely many states.

B = {binary palindromes} can’t be recognized by any DFA

The general proof strategy is:

– Assume (for contradiction) that it’s possible.

– Therefore, some DFA (call it M) exists that

recognizes B

B = {binary palindromes} can’t be recognized by any DFA

The general proof strategy is:

– Assume (for contradiction) that it’s possible.

– Therefore, some DFA (call it M) exists that

recognizes B

– Our goal is to show that M must be “confused”...

we want to show it “does the wrong thing”.

How can a DFA be “wrong”?

– when it accepts or rejects a string it shouldn’t.

B = {binary palindromes} can’t be recognized by any DFA

The general proof strategy is:

– Assume (for contradiction) that it’s possible.

– Therefore, some DFA (call it M) exists that

recognizes B

– Our goal is to show that M must be “confused”...

we want to show it “does the wrong thing” accepts

or rejects a string it shouldn’t.

B = {binary palindromes} can’t be recognized by any DFA

The general proof strategy is:

– Assume (for contradiction) that it’s possible.

– Therefore, some DFA (call it M) exists that recognizes B

– We want to show: M accepts or rejects a string it shouldn’t.

Key Idea 1: Key Idea 1: Key Idea 1: Key Idea 1: If two strings “collide” at any point, a

DFA can no longer distinguish between them!
0i1

?

0j1

The general proof strategy is:

– Assume (for contradiction) that it’s possible.

– Therefore, some DFA (call it M) exists that recognizes B

– We want to show: M accepts or rejects a string it shouldn’t.

Key Idea 1: Key Idea 1: Key Idea 1: Key Idea 1: If two strings “collide” at any point, a

DFA can no longer distinguish between them!

Key Idea 2: Key Idea 2: Key Idea 2: Key Idea 2: Our machine M has a finite number of

states which means if we have infinitely many

strings, two of them must collide!

B = {binary palindromes} can’t be recognized by any DFA

0a1
?

0b1

The general proof strategy is:

– Assume (for contradiction) that it’s possible.

– Therefore, some DFA (call it M) exists that recognizes B

– We want to show M accepts or rejects a string it shouldn’t.

We choose an INFINITEINFINITEINFINITEINFINITE set S of “half strings” (which

we intend to complete later). It is imperative that for

every pairevery pairevery pairevery pair of strings in our set there is an “accept”

completion that the two strings DO NOT SHARE.

B = {binary palindromes} can’t be recognized by any DFA

1

01

001

0001

00001

.............

B = {binary palindromes} can’t be recognized by any DFA

Suppose for contradiction that some DFA, M, recognizes B.

We show M accepts or rejects a string it shouldn’t.

Consider S={1, 01, 001, 0001, 00001, ...} = {0n1 : n ≥ 0}.

Key Key Key Key Idea 2: Idea 2: Idea 2: Idea 2: Our machine has a finite number of states which means

if we have infinitely many strings, two of them must collide!

B = {binary palindromes} can’t be recognized by any DFA

Suppose for contradiction that some DFA, M, recognizes B.

We show M accepts or rejects a string it shouldn’t.

Consider S={1, 01, 001, 0001, 00001, ...} = {0n1 : n ≥ 0}.

Since there are finitely many states in M and infinitely many

strings in S, there exist strings 0a1 ∈ S and 0b1 ∈ S with a≠b that

end in the same state of M.

SUPER IMPORTANT POINTSUPER IMPORTANT POINTSUPER IMPORTANT POINTSUPER IMPORTANT POINT: You do not get to choose

what a and b are. Remember, we’ve proven they

exist…we have to take the ones we’re given!

B = {binary palindromes} can’t be recognized by any DFA

Suppose for contradiction that some DFA, M, accepts B.

We show M accepts or rejects a string it shouldn’t.

Consider S = {0n1 : n ≥ 0}.

Since there are finitely many states in M and infinitely many

strings in S, there exist strings 0a1 ∈ S and 0b1 ∈ S with a≠b that

end in the same state of M.

Now, consider appending 0a to both strings.

Key Idea 1: Key Idea 1: Key Idea 1: Key Idea 1: If two strings “collide” at any point, a DFA can no longer

distinguish between them!

B = {binary palindromes} can’t be recognized by any DFA

Suppose for contradiction that some DFA, M, recognizes B.

We show M accepts or rejects a string it shouldn’t.

Consider S = {0n1 : n ≥ 0}.

Since there are finitely many states in M and infinitely many
strings in S, there exist strings 0a1 ∈ S and 0b1 ∈ S with a≠b that
end in the same state of M.

Now, consider appending 0a to both strings.

Then, since 0a1 and 0b1 end in the same state, 0a10a and
0b10a also end in the same state, call it q. But then M must
make a mistake: q needs to be an accept state since
0a10a ∈ B, but then M would accept 0b10a ∉ B which is an
error.

0a
a1

q
0a

0b1

B = {binary palindromes} can’t be recognized by any DFA

Suppose for contradiction that some DFA, M, recognizes B.

We show M accepts or rejects a string it shouldn’t.

Consider S = {0n1 : n ≥ 0}.

Since there are finitely many states in M and infinitely many strings in
S, there exist strings 0a1 ∈ S and 0b1 ∈ S with a≠b that end in the same
state of M.

Now, consider appending 0a to both strings.

Then, since 0a1 and 0b1 end in the same state, 0a10a and 0b10a also
end in the same state, call it q. But then M must make a mistake: q
needs to be an accept state since 0a10a ∈ B, but then M would accept
0b10a ∉ B which is an error.

This is a contradiction, since we assumed that M recognizes B.
Since M was arbitrary, there is no DFA that there is no DFA that there is no DFA that there is no DFA that recognizes B.B.B.B.

0a
a1

q
0a

0b1

Showing that a Language L is not regular

1. “Suppose for contradiction that some DFA M recognizes L.”

2. Consider an INFINITEINFINITEINFINITEINFINITE set S of “half strings” (which we

intend to complete later). It is imperative that for every pairevery pairevery pairevery pair

of strings in our set there is an “accept” completion that

the two strings DO NOT SHARE.

3. “Since SSSS is infinite and MMMM has finitely many states, there

must be two strings ssssaaaa and ssssbbbb in SSSS for some ssssaaaa ≠ ssssbbbb that end

up at the same state of MMMM.”

4. Consider appending the (correct) completion to each of the

two strings.

5. “Since ssssaaaa and ssssbbbb both end up at the same state of MMMM, and

we appended the same string tttt, both ssssaaaatttt and ssssbbbbtttt end at the

same state q of M. M. M. M. Since ssssaaaatttt ∈ L L L L and ssssbbbbtttt ∉ L, L, L, L, M M M M does not

recognize LLLL.”

6. “Since MMMM was arbitrary, no DFA recognizes LLLL.”

