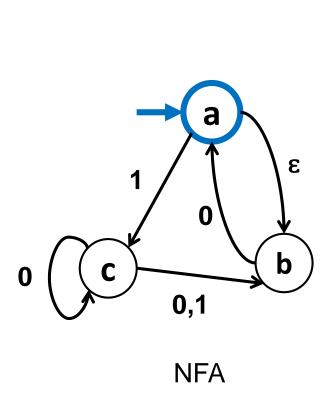
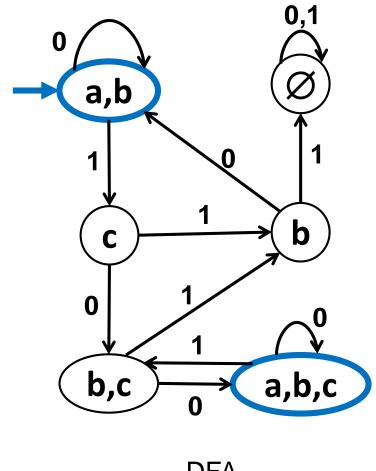
CSE 311: Foundations of Computing

Lecture 25: Pattern Matching, DFA≣NFA≣Regex Languages vs Representations

Last time: NFA to DFA





DFA

Exponential Blow-up in Simulating Nondeterminism

- In general the DFA might need a state for every subset of states of the NFA
 - Power set of the set of states of the NFA
 - n-state NFA yields DFA with at most 2^n states
 - We saw an example where roughly 2^n is necessary "Is the nth char from the end a 1?"

The famous "P=NP?" question asks whether a similar blow-up is always necessary to get rid of nondeterminism for polynomial-time algorithms

Pattern matching

Given

- a string s of n characters
- a pattern p of m characters
- usually $m \ll n$

Find

all occurrences of the pattern p in the string s

Obvious algorithm:

try to see if p matches at each of the positions in S
 stop at a failed match and try matching at the next position

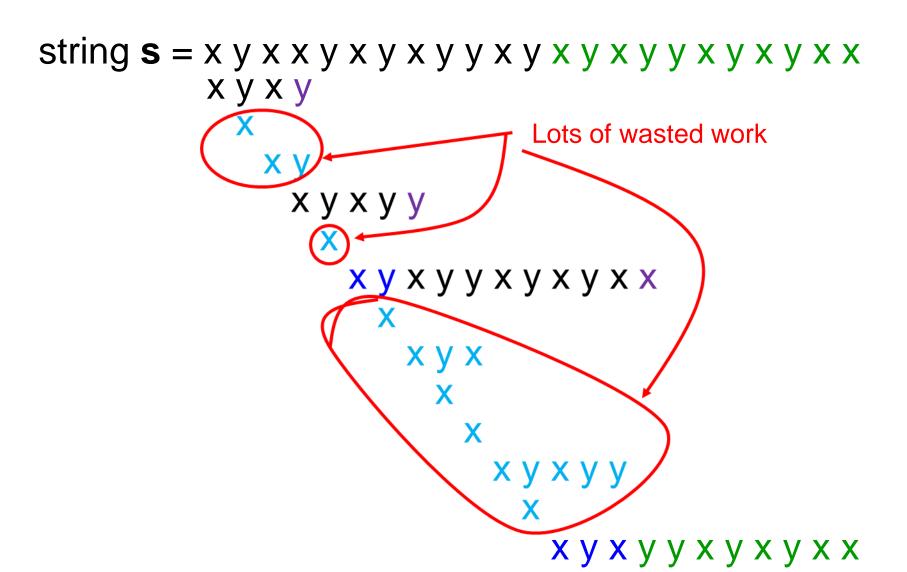
```
xyxy
     x y
      xyxyy
       xyxyyxyxx
         x y x
          X y x y y x y x y x x
```

```
xyxy
     x y
      xyxyy
        xyxyyxyxx
        X
         x y x
           X y x y y x y x y x x
```

```
xyxy
       x y
        xyxyy
          xyxyyxyxx
           X
            x y x
               x y x y <mark>y</mark> x y x y x x
```

```
xyxy
     x y
      xyxyy
        xyxyyxyxx
         X
          x y x
            X
            xyxyy
             X y x y y x y x y x x
```

```
xyxy
        X y
         xyxyy
           x y x y y x y x y x x
            X
Worst-case time
              x y x
  O(mn)
  (n-m) m
                 xyxyy
                   x y x y y x y x y x x
```

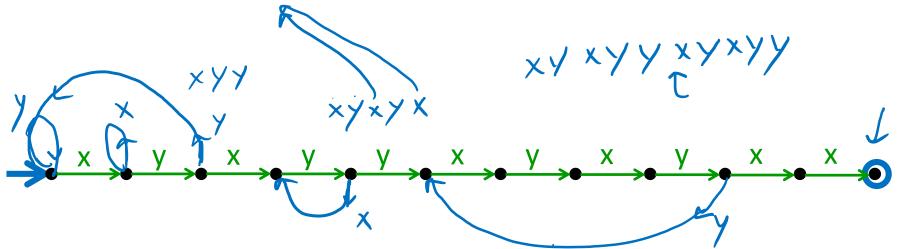


Better pattern matching via finite automata

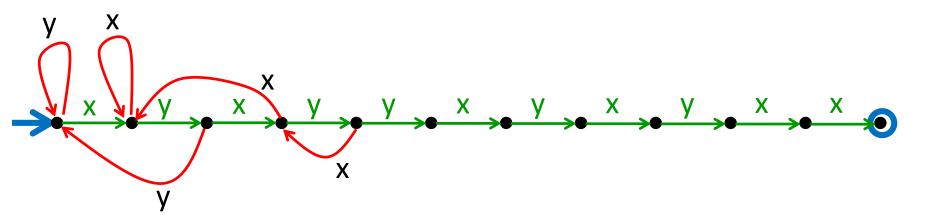
- Build a DFA for the pattern (preprocessing) of size $oldsymbol{O}(oldsymbol{m})$
 - Keep track of the 'longest match currently active'
 - The DFA will have only $m{m}+1$ states
- Run the DFA on the string n steps

- Obvious construction method for DFA will be $O(m^2)$ but can be done in O(m) time.
- Total O(m+n) time

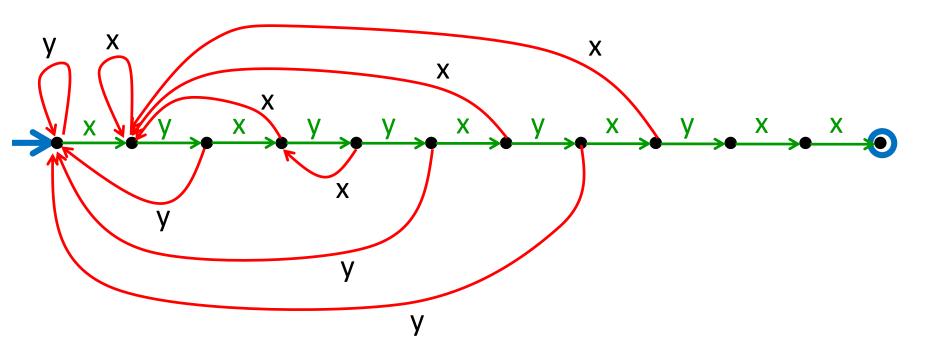
pattern $\mathbf{p}=x$ y x y y x y x y x

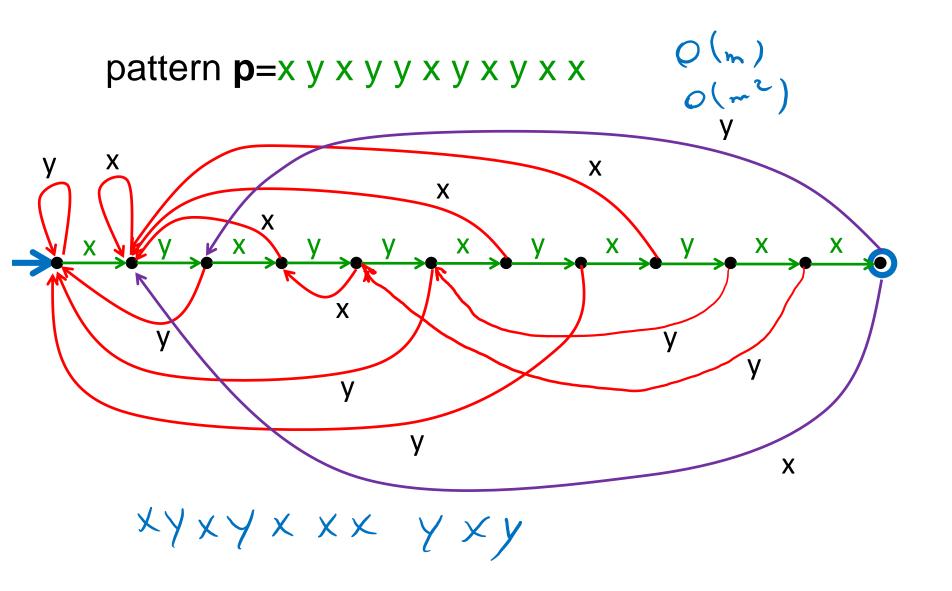


pattern **p**=x y x y y x y x y x x



pattern **p**=x y x y y x y x y x x

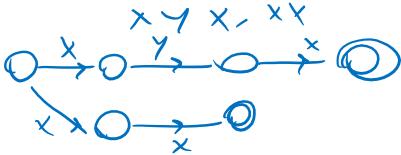




Generalizing

- Can search for arbitrary combinations of patterns
 - Not just a single pattern
 - Build NFA for pattern then convert to DFA 'on the fly*'.
 - * Only add states when the input string actually needs to use them

(Compare DFA constructed above with subset construction for the obvious NFA.)



DFAs ≡ NFAs ≡ Regular expressions

We have shown how to build an optimal DFA for every regular expression

- Build NFA
- Convert NFA to DFA using subset construction
- Minimize resulting DFA

Theorem: A language is recognized by a DFA (or NFA) if and only if it has a regular expression

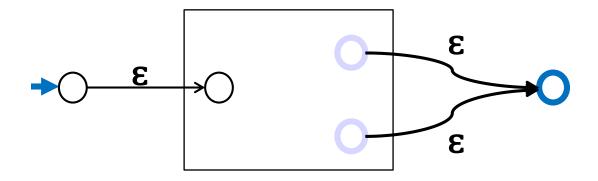
You need to know this fact but we won't ask you anything about the "only if" direction from DFA/NFA to regular expression. For fun, we sketch the idea.

Generalized NFAs

- Like NFAs but allow
 - Parallel edges
 - Regular Expressions as edge labels
 NFAs already have edges labeled ε or a
- An edge labeled by A can be followed by reading a string of input chars that is in the language represented by A
- Defn: A string x is accepted iff there is a path from start to final state labeled by a regular expression whose language contains x

Starting from an NFA

Add new start state and final state

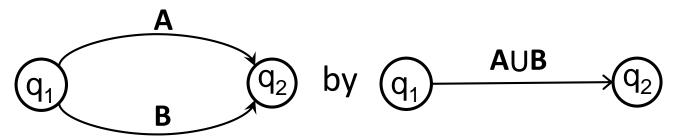


Then eliminate original states one by one, keeping the same language, until it looks like:

Final regular expression will be A

Only two simplification rules

• Rule 1: For any two states q_1 and q_2 with parallel edges (possibly $q_1=q_2$), replace



 Rule 2: Eliminate non-start/final state q₃ by replacing all

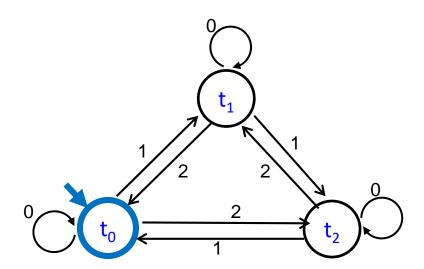
$$q_1$$
 \xrightarrow{A} q_3 \xrightarrow{C} q_2 by q_1 $\xrightarrow{AB*C}$ q_2

for every pair of states q_1 , q_2 (even if $q_1=q_2$)

Converting an NFA to a regular expression

Consider the DFA for the mod 3 sum

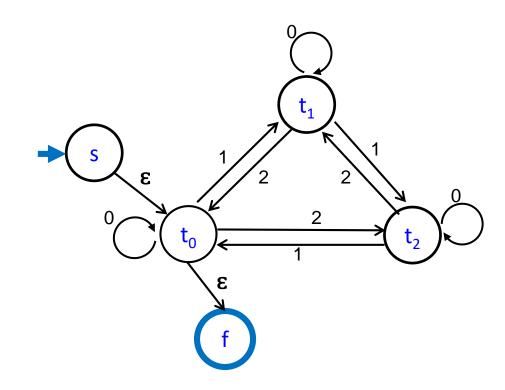
Accept strings from {0,1,2}* where the digits
 mod 3 sum of the digits is 0



Splicing out a state t₁

Regular expressions to add to edges

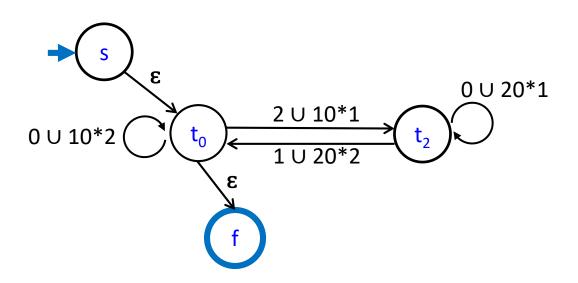
 $t_0 \rightarrow t_1 \rightarrow t_0$: 10*2 $t_0 \rightarrow t_1 \rightarrow t_2$: 10*1 $t_2 \rightarrow t_1 \rightarrow t_0$: 20*2 $t_2 \rightarrow t_1 \rightarrow t_2$: 20*1



Splicing out a state t₁

Regular expressions to add to edges

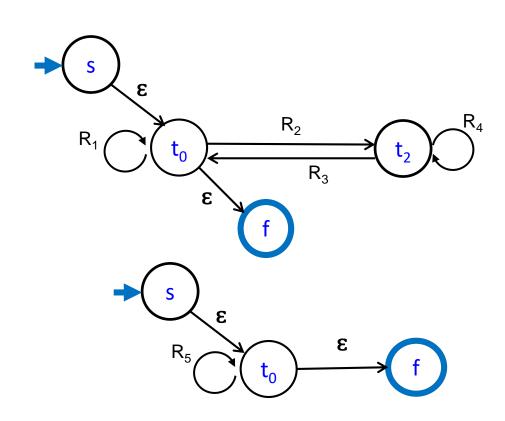
 $t_0 \rightarrow t_1 \rightarrow t_0 : 10*2$ $t_0 \rightarrow t_1 \rightarrow t_2 : 10*1$ $t_2 \rightarrow t_1 \rightarrow t_0 : 20*2$ $t_2 \rightarrow t_1 \rightarrow t_2 : 20*1$



Splicing out state t₂ (and then t₀)

 R_1 : 0 U 10*2 R_2 : 2 U 10*1 R_3 : 1 U 20*2 R_4 : 0 U 20*1

 $R_5: R_1 \cup R_2 R_4 R_3$

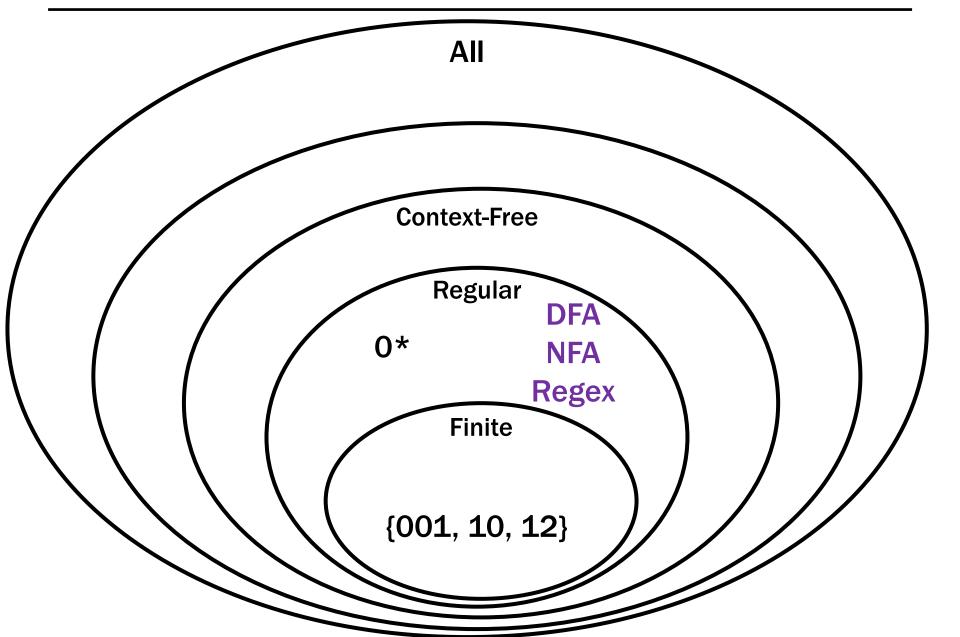


Final regular expression: $R_5^*=(0 \cup 10^*2 \cup (2 \cup 10^*1)(0 \cup 20^*1)^*(1 \cup 20^*2))^*$

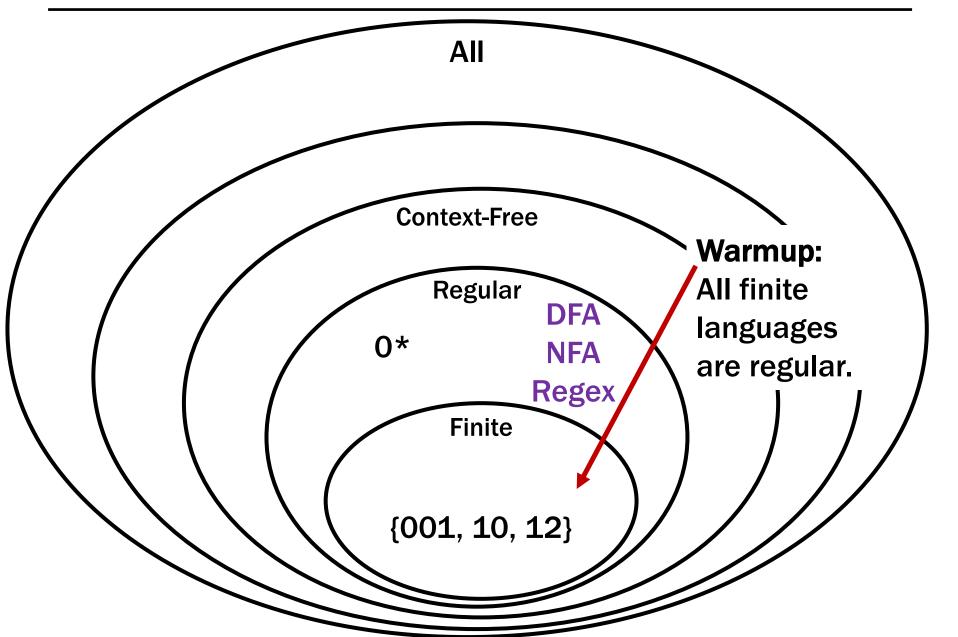
What languages have DFAs? CFGs?

All of them?

Languages and Representations!



Languages and Representations!

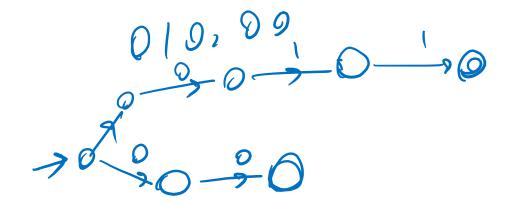


DFAs Recognize Any Finite Language

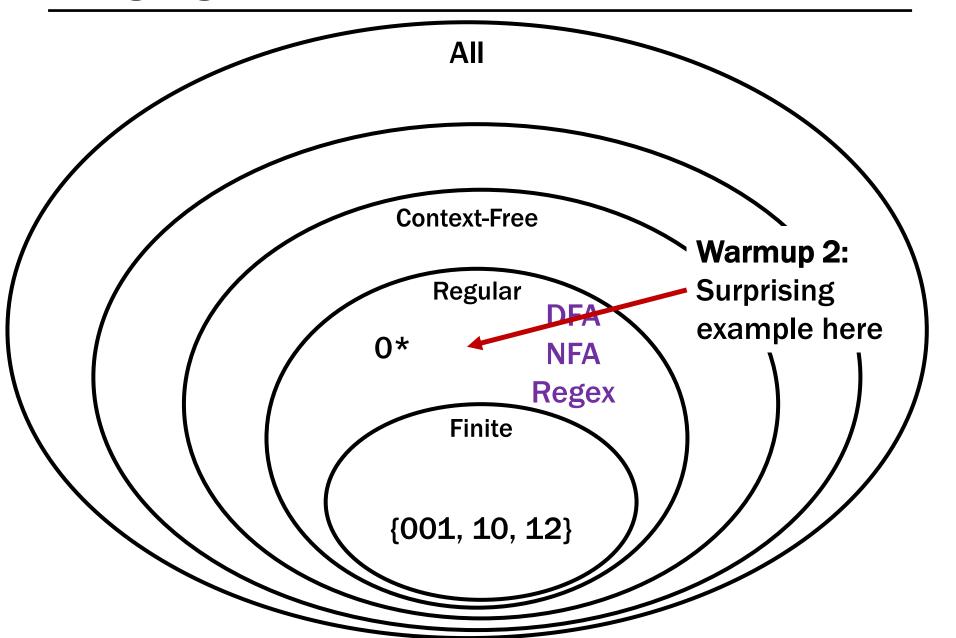
DFAs Recognize Any Finite Language

Construct a DFA for each string in the language.

Then, put them together using the union construction.



Languages and Machines!



An Interesting Infinite Regular Language

L = $\{x \in \{0, 1\}^*: x \text{ has an equal number of substrings } 01 \text{ and } 10\}.$

L is infinite.

0, 00, 000, ...

L is regular. How could this be?

(It seems to be comparing counts and counting seems hard for DFAs.)

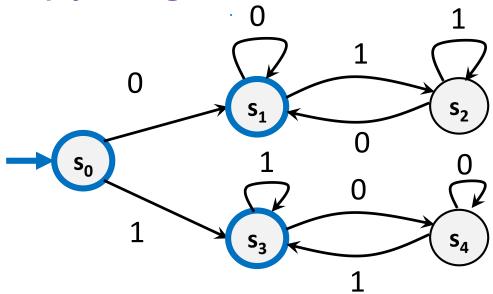
An Interesting Infinite Regular Language

L = $\{x \in \{0, 1\}^*: x \text{ has an equal number of substrings } 01 \text{ and } 10\}.$

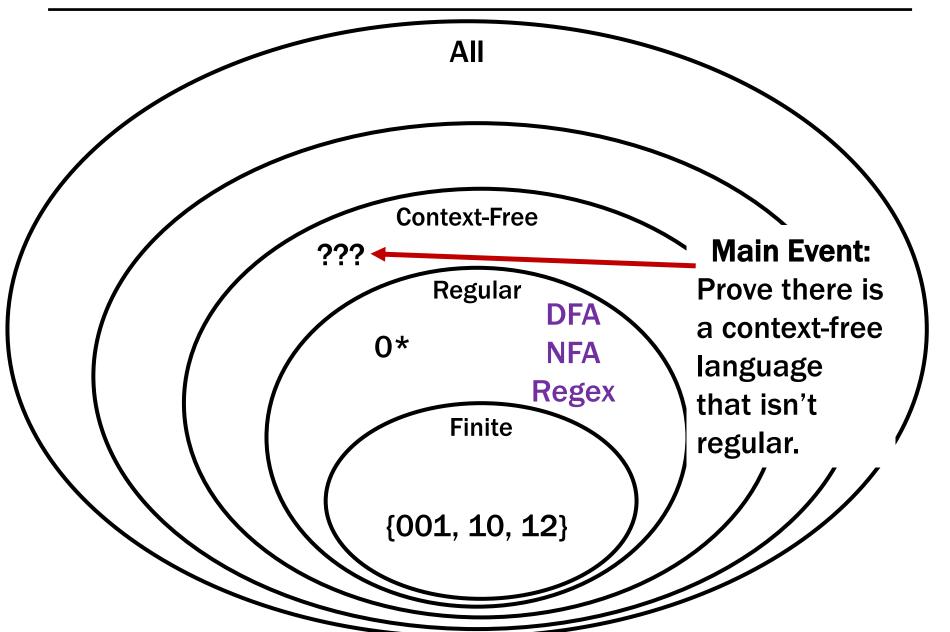
L is infinite.

0, 00, 000, ...

L is regular. How could this be? It is just the set of binary strings that are empty or begin and end with the same character!



Languages and Representations!



The language of "Binary Palindromes" is Context-Free

$$S \rightarrow \epsilon$$
 | 0 | 1 | 0S0 | 1S1

Is the language of "Binary Palindromes" Regular?

Intuition (NOT A PROOF!):

Q: What would a DFA need to keep track of to decide the language?

A: It would need to keep track of the "first part" of the input in order to check the second part against it

...but there are an infinite # of possible first parts and we only have finitely many states.

The general proof strategy is:

- Assume (for contradiction) that it's possible.
- Therefore, some DFA (call it M) exists that recognizes B

The general proof strategy is:

- Assume (for contradiction) that it's possible.
- Therefore, some DFA (call it M) exists that recognizes B
- Our goal is to show that M must be "confused"...
 we want to show it "does the wrong thing".

How can a DFA be "wrong"?

when it accepts or rejects a string it shouldn't.

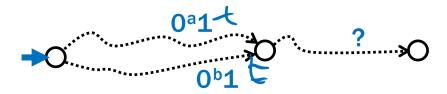
The general proof strategy is:

- Assume (for contradiction) that it's possible.
- Therefore, some DFA (call it M) exists that recognizes B
- Our goal is to show that M must be "confused"...
 we want to show it "does the wrong thing" accepts or rejects a string it shouldn't.

The general proof strategy is:

- Assume (for contradiction) that it's possible.
- Therefore, some DFA (call it M) exists that recognizes B
- We want to show: M accepts or rejects a string it shouldn't.

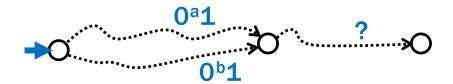
Key Idea 1: If two strings "collide" at any point, a DFA can no longer distinguish between them!



The general proof strategy is:

- Assume (for contradiction) that it's possible.
- Therefore, some DFA (call it M) exists that recognizes B
- We want to show: M accepts or rejects a string it shouldn't.

Key Idea 1: If two strings "collide" at any point, a DFA can no longer distinguish between them!



Key Idea 2: Our machine M has a finite number of states which means if we have infinitely many strings, two of them must collide!

The general proof strategy is:

- Assume (for contradiction) that it's possible.
- Therefore, some DFA (call it M) exists that recognizes B
- We want to show M accepts or rejects a string it shouldn't.

We choose an **INFINITE** set S of "half strings" (which we intend to complete later). It is imperative that for **every pair** of strings in our set there is an <u>"accept"</u> completion that the two strings DO NOT SHARE.

1_____ 01____ 001____ 0001____

.....

Suppose for contradiction that some DFA, M, recognizes B.

We show M accepts or rejects a string it shouldn't.

Consider S= $\{1, 01, 001, 0001, 00001, ...\} = \{0^n1 : n \ge 0\}.$

Key Idea 2: Our machine has a finite number of states which means if we have infinitely many strings, two of them must collide!

Suppose for contradiction that some DFA, M, recognizes B. We show M accepts or rejects a string it shouldn't. Consider $S=\{1, 01, 001, 0001, 00001, ...\} = \{0^n1 : n \ge 0\}$.

Since there are finitely many states in M and infinitely many strings in S, there exist strings $0^a1 \in S$ and $0^b1 \in S$ with $a \ne b$ that end in the same state of M.

SUPER IMPORTANT POINT: You do not get to choose what a and b are. Remember, we've proven they exist...we have to take the ones we're given!

Suppose for contradiction that some DFA, M, recognizes B.

We show M accepts or rejects a string it shouldn't.

Consider $S = \{0^n1 : n \ge 0\}.$

Since there are finitely many states in M and infinitely many strings in S, there exist strings $0^a1 \in S$ and $0^b1 \in S$ with $a \ne b$ that end in the same state of M.

Now, consider appending 0a to both strings.

Key Idea 1: If two strings "collide" at any point, a DFA can no longer distinguish between them!

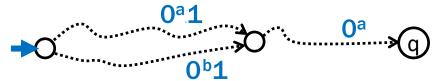
Suppose for contradiction that some DFA, M, recognizes B.

We show M accepts or rejects a string it shouldn't.

Consider $S = \{0^n 1 : n \ge 0\}.$

Since there are finitely many states in M and infinitely many strings in S, there exist strings $0^a1 \in S$ and $0^b1 \in S$ with $a \ne b$ that end in the same state of M.

Now, consider appending 0^a to both strings.



Then, since 0^a1 and 0^b1 end in the same state, 0^a10^a and 0^b10^a also end in the same state, call it q. But then M must make a mistake: q needs to be an accept state since $0^a10^a \in B$, but then M would accept $0^b10^a \notin B$ which is an error.

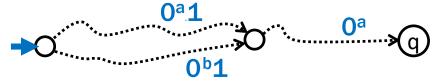
Suppose for contradiction that some DFA, M, recognizes B.

We show M accepts or rejects a string it shouldn't.

Consider $S = \{0^n 1 : n \ge 0\}.$

Since there are finitely many states in M and infinitely many strings in S, there exist strings $0^a1 \in S$ and $0^b1 \in S$ with $a \ne b$ that end in the same state of M.

Now, consider appending 0° to both strings.



Then, since 0^a1 and 0^b1 end in the same state, 0^a10^a and 0^b10^a also end in the same state, call it q. But then M must make a mistake: q needs to be an accept state since $0^a10^a \in B$, but then M would accept $0^b10^a \notin B$ which is an error.

This is a contradiction, since we assumed that M recognizes B. Since M was arbitrary, **there is no DFA that** recognizes **B.**

Showing that a Language L is not regular

- 1. "Suppose for contradiction that some DFA M recognizes L."
- 2. Consider an **INFINITE** set S of "half strings" (which we intend to complete later). It is imperative that for **every pair** of strings in our set there is an <u>"accept" completion</u> that the two strings DO NOT SHARE.
- 3. "Since **S** is infinite and **M** has finitely many states, there must be two strings s_a and s_b in **S** for some $s_a \neq s_b$ that end up at the same state of **M**."
- 4. Consider appending the (correct) completion to each of the two strings.
- 5. "Since \mathbf{s}_a and \mathbf{s}_b both end up at the same state of \mathbf{M} , and we appended the same string \mathbf{t} , both $\mathbf{s}_a\mathbf{t}$ and $\mathbf{s}_b\mathbf{t}$ end at the same state q of \mathbf{M} . Since $\mathbf{s}_a\mathbf{t} \in \mathbf{L}$ and $\mathbf{s}_b\mathbf{t} \notin \mathbf{L}$, \mathbf{M} does not recognize \mathbf{L} ."
- 6. "Since M was arbitrary, no DFA recognizes L."