CSE 311: Foundations of Computing

Lecture 24: NFAs, Regular expressions, and NFA \rightarrow DFA

Nondeterministic Finite Automata (NFA)

- Graph with start state, final states, edges labeled by symbols (like DFA) but
- Not required to have exactly 1 edge out of each state labeled by each symbol- can have 0 or >1
- Also can have edges labeled by empty string ε
- Defn: x is in the language recognized by an NFA if and only if x labels a path from the start state to some final state

Three ways of thinking about NFAs

- Outside observer: Is there a path labeled by x from the start state to some final state?
- Perfect guesser: The NFA has input x and whenever there is a choice of what to do it magically guesses a good one (if one exists)
- Parallel exploration: The NFA computation runs all possible computations on x step-by-step at the same time in parallel

NFA for set of binary strings with a 1 in the $3^{\text {rd }}$ position from the end

NFA for set of binary strings with a 1 in the $3^{\text {rd }}$ position from the end

Compare with the smallest DFA

Parallel Exploration view of an NFA

Input string 0101100

NFAs and regular expressions

Theorem: For any set of strings (language) A described by a regular expression, there is an NFA that recognizes A.

Proof idea: Structural induction based on the recursive definition of regular expressions...

$$
\begin{aligned}
& P(A) \text { be "There is an NFBA } N_{A} \text { that } \\
& \text { re wognter the language represented } \\
& \text { hy req exp. A" } \\
& \text { D regular exprus. } A \text { P(A) is tue }
\end{aligned}
$$

Regular Expressions over Σ

- Basis:
$-\varnothing, \varepsilon$ are regular expressions
$-a$ is a regular expression for any $a \in \Sigma$
- Recursive step:
- If A and B are regular expressions then so are:
$(A \cup B)$
(AB)
A*

Base Case

- Case \varnothing :

$$
-10
$$

- Case ε :

$$
\rightarrow(0
$$

- Case a:

Base Case

- Case \varnothing :
- Case ε :

- Case a:

Inductive Hypothesis

- Suppose that for some regular expressions A and B there exist NFAs N_{A} and N_{B} such that N_{A} recognizes the language given by A and N_{B} recognizes the language given by B

N_{A}

N_{B}

Inductive Step

Case $(A \cup B)$:

Inductive Step

Case $(A \cup B)$:

Inductive Step

Case (AB):

Inductive Step

Case (AB):

Inductive Step

Case A*

Inductive Step

Case A*

N_{A}

Build an NFA for (01 $\cup \mathbf{1}) * 0$

Solution

$(01 \cup 1)^{*} 0$

NFAs and DFAs

Every DFA is an NFA

- DFAs have requirements that NFAs don't have

Can NFAs recognize more languages?

NFAs and DFAs

Every DFA is an NFA

- DFAs have requirements that NFAs don't have

Can NFAs recognize more languages? No!

Theorem: For every NFA there is a DFA that recognizes exactly the same language

Three ways of thinking about NFAs

- Outside observer: Is there a path labeled by x from the start state to some final state?
- Perfect guesser: The NFA has input x and whenever there is a choice of what to do it magically guesses a good one (if one exists)
- Parallel exploration: The NFA computation runs all possible computations on x step-by-step at the same time in parallel

Conversion of NFAs to a DFAs

- Proof Idea:
- The DFA keeps track of ALL the states that the part of the input string read so far can reach in the NFA
- There will be one state in the DFA for each subset of states of the NFA that can be reached by some string

Parallel Exploration view of an NFA

Input string 0101100

Conversion of NFAs to a DFAs

New start state for DFA

- The set of all states reachable from the start state of the NFA using only edges labeled ε

NFA

DFA

Conversion of NFAs to a DFAs

For each state of the DFA corresponding to a set S_ of states of the NFA and each symbol s.

- Add an edge labeled s to state corresponding to T, the set of states of the NFA reached by
- starting from some state in S , then
- following one edge labeled by s, and then following some number of edges labeled by ε
- T will be \varnothing if no edges from S labeled s exist

Conversion of NFAs to a DFAs

Final states for the DFA

- All states whose set contain some final state of the NFA

NFA

Example: NFA to DFA

NFA

DFA

Example: NFA to DFA

NFA
DFA

Example: NFA to DFA

DFA

Example: NFA to DFA

Example: NFA to DFA

Example: NFA to DFA

Example: NFA to DFA

Example: NFA to DFA

Exponential Blow-up in Simulating Nondeterminism

- In general the DFA might need a state for every subset of states of the NFA
- Power set of the set of states of the NFA
- n-state NFA yields DFA with at most 2^{n} states
- We saw an example where roughly 2^{n} is necessary "Is the $\boldsymbol{n}^{\text {th }}$ char from the end a 1?"
- The famous "P=NP?" question asks whether a similar blow-up is always necessary to get rid of nondeterminism for polynomial-time algorithms

