CSE 311: Foundations of Computing

Lecture 24: NFAs, Regular expressions, and NFA—DFA




Nondeterministic Finite Automata (NFA)

 Graph with start state, final states, edges labeled
by symbols (like DFA) but

— Not required to have exactly 1 edge out of EM
labeled by each symbol— can have O or >1

— Also can have edges labeled by empty string ¢
 Defn: xis in the language recognized by an NFA if
and only if x labels a path from the start state to

some final state

OmOmOmn0
® ®

0,1



Three ways of thinking about NFAs

* Outside observer: Is there a path labeled by x from
the start state to some final state?

* Perfect guesser: The NFA has input x and whenever
there is a choice of what to do it magically guesses a
good one (if one exists)

 Parallel exploration: The NFA computation runs all
possible computations on x step-by-step at the same
time in parallel



NFA for set of binary strings with a 1 in the 39 position from the end

L@ 6=—=()




NFA for set of binary strings with a 1 in the 39 position from the end

0,1
G OE ORI O
S5 s s (50



Compare with the smallest DFA

0,1

V\“(L
1 0,1 0,1
D O O O N
(z\+(




Parallel Exploration view of an NFA

_»8 1 0,1 0,1
FEMGLNOLNG

Input string 0101100

@@@@@
| Yo

Her(—(s)
RO O OFd
aOmCR

(-



NFAs and regular expressions

Theorem: For any set of strings (language) A

described by a regular expression, there is an
NFA that recognizes A.

Proof idea: Structural induction based on the
recursive definition of regular expressions...
”\)(A\ b LMol U an v N, Tt
e gl el Y. (CMQU@DQ /’fﬂ]/\b]&\u
(447 v Q&V- /AY |
N gl i A Al i P



Regular Expressions over X

* Basis:
— 4, € are regular expressions
— a is a regular expression for any a € X~

* Recursive step:
— If A and B are regular expressions then so are:
(A U B)
(AB)
A*



Base Case

 Case J:

e Case ¢:

e Case a:

—) o6



Base Case

 Case J:

e Case ¢:

e Case a:




Inductive Hypothesis

 Suppose that for some regular expressions
A and B there exist NFAs N, and Ng such
that N, recognizes the language given by A
and Ng recognizes the language given by B

O O
»0 »0

O O




Inductive Step

Case (A U B):

AO\

>0 2
®
NA
©
40
©




Inductive Step

Case (A U B):




Inductive Step

Case (AB):




Inductive Step

Case (AB):




Inductive Step

F ;
Case A* ~

Fonay \ 2 K Y/

/ ¢




Inductive Step

Case A*




Build an NFA for (01 U1)*0




Solution

(01 u1)°0




NFAs and DFAs

Every DFA is an NFA
— DFAs have requirements that NFAs don’t have

Can NFAs recognhize more languages?



NFAs and DFAs

Every DFA is an NFA
— DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages? No!

Theorem: For every NFA there is a DFA that
recoghizes exactly the same language




Three ways of thinking about NFAs

* Outside observer: Is there a path labeled by x from
the start state to some final state?

* Perfect guesser: The NFA has input x and whenever
there is a choice of what to do it magically guesses a
good one (if one exists)

 Parallel exploration: The NFA computation runs all
possible computations on x step-by-step at the same
time in parallel



Conversion of NFAs to a DFAs

 Proof Idea:

— The DFA keeps track of ALL the states that the
part of the input string read so far can reach in
the NFA

— There will be one state in the DFA for each
subset of states of the NFA that can be reached
by some string



Parallel Exploration view of an NFA

_»8 1 0,1 0,1
FEMGLNOLNG

Input string 0101100

@@@@@
| Yo

Her(—(s)
(e~
aOmCR

I OO OF



Conversion of NFAs to a DFAs

New start state for DFA

— The set of all states reachable from the start
state of the NFA using only edges labeled ¢




Conversion of NFAs to a DFAs

For each state of the DFA corresponding to a set S of

states of the NFA and each symbol s
— Add an edge labeled s to state corresponding to T, the
set of states of the NFA reached by
- starting from some state in S, then
- following one edge labeled by s, and
then following some number of edges labeled by €

— T will be D if no edges from S labeled s exist
< 0




Conversion of NFAs to a DFAs

Final states for the DFA

— All states whose set contain some final state of
the NFA

DFA



Example: NFA to DFA

DFA



Example: NFA to DFA

O

e
(ab

DFA



Example: NFA to DFA

DFA



Example: NFA to DFA

DFA



Example: NFA to DFA

DFA



Example: NFA to DFA

0,1
0/ A
Gp) @
1 0 |
——{b

| Z



Example: NFA to DFA




Example: NFA to DFA




Exponential Blow-up in Simulating Nondeterminism

* |In general the DFA might need a state for every
subset of states of the NFA
— Power set of the set of states of the NFA
— n-state NFA yields DFA with at most 2" states
— We saw an example where roughly 2™ is necessary

“Is the nt" char from the end a 1?”

 The famous “P=NP?” question asks whether a
similar blow-up is always necessary to get rid
of nondeterminism for polynomial-time
algorithms



