
CSE 311: Foundations of Computing

Lecture 24: NFAs, Regular expressions, and NFA→DFA

Nondeterministic Finite Automata (NFA)

• Graph with start state, final states, edges labeled

by symbols (like DFA) but

– Not required to have exactly 1 edge out of each state

labeled by each symbol--- can have 0 or >1

– Also can have edges labeled by empty string ε

• DefnDefnDefnDefn: : : : x is in the language recognized by an NFA if

and only if x labels a path from the start state to

some final state

s0 s2 s3s1

111

0,10,1

Three ways of thinking about NFAs

• Outside observer: Is there a path labeled by x from

the start state to some final state?

• Perfect guesser: The NFA has input x and whenever

there is a choice of what to do it magically guesses a

good one (if one exists)

• Parallel exploration: The NFA computation runs all

possible computations on x step-by-step at the same

time in parallel

NFA for set of binary strings with a 1 in the 3rd position from the end

NFA for set of binary strings with a 1 in the 3rd position from the end

0,1

ssss3333 ssss2222
ssss1111 ssss0000

0,1 0,11

001 011

111

110

101010000

100

1

1
1 0

1

1

1

1

00
0

1

0

0

00

Compare with the smallest DFA

0,1

ssss3333 ssss2222 ssss1111 ssss0000

0,1 0,11

0,1

ssss3333 ssss2222 ssss1111 ssss0000

0,1 0,11

Parallel Exploration view of an NFA

Input string 0101100

ssss3333

0 1 0 1 1 0 0

ssss3333

ssss1111

ssss3333

ssss2222

ssss3333

ssss0000

ssss1111

ssss3333

ssss0000

ssss2222

ssss3333 ssss3333

ssss0000

X

ssss3333

ssss1111

ssss2222

X

Theorem:Theorem:Theorem:Theorem: For any set of strings (language) �

described by a regular expression, there is an

NFA that recognizes �.

Proof idea: Structural induction based on the

recursive definition of regular expressions...

NFAs and regular expressions

Regular Expressions over Σ

• Basis:

– ∅∅∅∅, ɛɛɛɛ are regular expressions

– aaaa is a regular expression for any a ∈ Σ

• Recursive step:

– If AAAA and BBBB are regular expressions then so are:

(A ∪ B)

(AB)

A*

Base Case

• Case ∅∅∅∅:

• Case ɛɛɛɛ:

• Case aaaa:

Base Case

• Case ∅∅∅∅:

• Case ɛɛɛɛ:

• Case aaaa:
a

Inductive Hypothesis

• Suppose that for some regular expressions

A and B there exist NFAs NA and NB such

that NA recognizes the language given by A

and NB recognizes the language given by B

NA NB

Inductive Step

Case (A ∪ B):

NA

NB

Inductive Step

Case (A ∪ B):

ɛɛɛɛ

ɛɛɛɛ

NA

NB

Inductive Step

Case (AB):

NA NB

Inductive Step

Case (AB):

ɛɛɛɛ

ɛɛɛɛ

NA NB

Inductive Step

Case A*

NA

Inductive Step

Case A*

ɛɛɛɛ

ɛɛɛɛ

ɛɛɛɛ

NA

Build an NFA for (01 ∪1)*0

Solution

(01 ∪∪∪∪1)*0

0
ɛɛɛɛ

ɛɛɛɛ

ɛɛɛɛ

ɛɛɛɛ

0

1

1

ɛɛɛɛ

ɛɛɛɛ

ɛɛɛɛ

ɛɛɛɛ

ɛɛɛɛ

NFAs and DFAs

Every DFA isisisis an NFA

– DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages?

NFAs and DFAs

Every DFA isisisis an NFA

– DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages? No!

Theorem: Theorem: Theorem: Theorem: For every NFA there is a DFA that

recognizes exactly the same language

Three ways of thinking about NFAs

• Outside observer: Is there a path labeled by x from

the start state to some final state?

• Perfect guesser: The NFA has input x and whenever

there is a choice of what to do it magically guesses a

good one (if one exists)

• Parallel exploration: The NFA computation runs all

possible computations on x step-by-step at the same

time in parallel

Conversion of NFAs to a DFAs

• Proof Idea:

– The DFA keeps track of ALL the states that the

part of the input string read so far can reach in

the NFA

– There will be one state in the DFA for each

subset of states of the NFA that can be reached

by some string

0,1

ssss3333 ssss2222 ssss1111 ssss0000

0,1 0,11

Parallel Exploration view of an NFA

Input string 0101100

ssss3333 ssss3333 ssss3333 ssss3333 ssss3333 ssss3333 ssss3333

0 1 0 1 1 0 0

ssss2222 ssss1111 ssss0000

ssss2222 ssss1111 ssss0000

ssss2222 ssss1111 ssss0000

ssss3333

X

X

Conversion of NFAs to a DFAs

New start state for DFA

– The set of all states reachable from the start

state of the NFA using only edges labeled ɛɛɛɛ

a,b,e,f

f

e

ba
ɛɛɛɛ

ɛɛɛɛ

ɛɛɛɛ

NFA DFA

Conversion of NFAs to a DFAs

For each state of the DFA corresponding to a set S of

states of the NFA and each symbol s
– Add an edge labeled s to state corresponding to T, the

set of states of the NFA reached by

∙ starting from some state in S, then

∙ following one edge labeled by s, and

then following some number of edges labeled by ɛɛɛɛ

– T will be ∅∅∅∅ if no edges from S labeled s exist

f

e

b

ɛɛɛɛ

ɛɛɛɛ
c

d

g

ɛɛɛɛ

1

1

1

1

b,e,f c,d,e,g
1

Conversion of NFAs to a DFAs

Final states for the DFA

– All states whose set contain some final state of

the NFA

a,b,c,e

ce

b
a

NFA
DFA

Example: NFA to DFA

c

a

b

0

ɛɛɛɛ

0,1

1

0

NFA

DFA

Example: NFA to DFA

c

a

b

0

ɛɛɛɛ

0,1

1

0

NFA

a,b

DFA

Example: NFA to DFA

c

a

b

0

ɛɛɛɛ

0,1

1

0

NFA

a,b

DFA

0

c

1

Example: NFA to DFA

c

a

b

0

ɛɛɛɛ

0,1

1

0

NFA

a,b

DFA

0

c

1

b

b,c

1

0

Example: NFA to DFA

c

a

b

0

ɛɛɛɛ

0,1

1

0

NFA

a,b

DFA

0

c

1

b

b,c

1

0

∅∅∅∅

10

Example: NFA to DFA

c

a

b

0

ɛɛɛɛ

0,1

1

0

NFA

a,b

DFA

0

c

1

b

b,c

1

0

∅∅∅∅

1

0,1

0

Example: NFA to DFA

c

a

b

0

ɛɛɛɛ

0,1

1

0

NFA

a,b

DFA

0

c

1

b

b,c

1

0

a,b,c

∅∅∅∅

1

0,1

0

0

1

Example: NFA to DFA

c

a

b

0

ɛɛɛɛ

0,1

1

0

NFA

a,b

DFA

0

c

1

b

b,c

1

0

a,b,c

∅∅∅∅

1

0,1

0

0

1

1
0

Exponential Blow-up in Simulating Nondeterminism

• In general the DFA might need a state for every
subset of states of the NFA

– Power set of the set of states of the NFA

– �-state NFA yields DFA with at most �� states

– We saw an example where roughly �� is necessary

“Is the �th char from the end a 1?”

• The famous “P=NP?” question asks whether a
similar blow-up is always necessary to get rid
of nondeterminism for polynomial-time
algorithms

