
CSE 311: Foundations of Computing

Lecture 24:  NFAs, Regular expressions, and NFA→DFA



Nondeterministic Finite Automata (NFA)

• Graph with start state, final states, edges labeled 

by symbols (like DFA) but

– Not required to have exactly 1 edge out of each state 

labeled by each symbol--- can have 0 or >1

– Also can have edges labeled by empty string ε

• DefnDefnDefnDefn:  :  :  :  x is in the language recognized by an NFA if 

and only if x labels a path from the start state to 

some final state
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Three ways of thinking about NFAs

• Outside observer:  Is there a path labeled by x from 

the start state to some final state?  

• Perfect guesser: The NFA has input x and whenever 

there is a choice of what to do it magically guesses a 

good one (if one exists)

• Parallel exploration:  The NFA computation runs all 

possible computations on x step-by-step at the same 

time in parallel



NFA for set of binary strings with a 1 in the 3rd position from the end



NFA for set of binary strings with a 1 in the 3rd position from the end
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Compare with the smallest DFA
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Parallel Exploration view of an NFA
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Theorem:Theorem:Theorem:Theorem: For any set of strings (language) �

described by a regular expression, there is an 

NFA that recognizes �.  

Proof idea:   Structural induction based on the 

recursive definition of regular expressions...

NFAs and regular expressions



Regular Expressions over Σ

• Basis:

– ∅∅∅∅, ɛɛɛɛ are regular expressions

– aaaa is a regular expression for any a ∈ Σ

• Recursive step:

– If AAAA and BBBB are regular expressions then so are:

(A ∪ B)

(AB)

A*



Base Case

• Case ∅∅∅∅:

• Case ɛɛɛɛ:

• Case aaaa:



Base Case

• Case ∅∅∅∅:

• Case ɛɛɛɛ:

• Case aaaa:
a



Inductive Hypothesis

• Suppose that for some regular expressions

A and B there exist NFAs NA and NB such 

that NA recognizes the language given by A 

and NB recognizes the language given by B

NA NB



Inductive Step

Case (A ∪ B):

NA

NB



Inductive Step

Case (A ∪ B):

ɛɛɛɛ
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Inductive Step

Case (AB):

NA NB



Inductive Step

Case (AB):
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Inductive Step

Case A*

NA



Inductive Step

Case A*
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Build an NFA for (01 ∪1)*0



Solution

(01 ∪∪∪∪1)*0
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NFAs and DFAs

Every DFA isisisis an NFA

– DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages?



NFAs and DFAs

Every DFA isisisis an NFA

– DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages?   No!

Theorem:  Theorem:  Theorem:  Theorem:  For every NFA there is a DFA that 

recognizes exactly the same language



Three ways of thinking about NFAs

• Outside observer:  Is there a path labeled by x from 

the start state to some final state?  

• Perfect guesser: The NFA has input x and whenever 

there is a choice of what to do it magically guesses a 

good one (if one exists)

• Parallel exploration:  The NFA computation runs all 

possible computations on x step-by-step at the same 

time in parallel



Conversion of NFAs to a DFAs

• Proof Idea:

– The DFA keeps track of ALL the states that the 

part of the input string read so far can reach in 

the NFA

– There will be one state in the DFA for each 

subset of states of the NFA that can be reached 

by some string
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Conversion of NFAs to a DFAs

New start state for DFA

– The set of all states reachable from the start 

state of the NFA using only edges labeled ɛɛɛɛ

a,b,e,f
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Conversion of NFAs to a DFAs

For each state of the DFA corresponding to a set S of 

states of the NFA and each symbol s
– Add an edge labeled s to state corresponding to T, the 

set of states of the NFA reached by 

∙ starting from some state in S, then

∙ following one edge labeled by s, and

then following some number of edges labeled by ɛɛɛɛ

– T will be ∅∅∅∅ if no edges from S labeled s exist
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Conversion of NFAs to a DFAs

Final states for the DFA

– All states whose set contain some final state of 

the NFA

a,b,c,e
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b
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Example: NFA to DFA
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Example: NFA to DFA
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Example: NFA to DFA
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Example: NFA to DFA
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Example: NFA to DFA
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Example: NFA to DFA
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Example: NFA to DFA
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Example: NFA to DFA
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Exponential Blow-up in Simulating Nondeterminism

• In general the DFA might need a state for every 
subset of states of the NFA

– Power set of the set of states of the NFA

–  �-state NFA yields DFA with at most �� states

– We saw an example where roughly �� is necessary

“Is the �th char from the end a 1?”

• The famous “P=NP?” question asks whether a 
similar blow-up is always necessary to get rid 
of nondeterminism for polynomial-time 
algorithms


