CSE 311: Foundations of Computing

Lecture 19: Regular Expressions &

Context Free Grammars
< 5 7, 20\ .! VJ'\JN/ \rly;\‘L R{arQA‘ ?{oL 2

GRAMMAR!
"ﬂi.n ':.)\J\)
e (20 —
,;-E 1 oy —/c
= \ 4
[Audience looks around]
“What is going on? There must be some context we’re missing”

KCC(M/

”

Review: each regular expression is a “pattern

€ matches the empty string
a matches the one character string a

(A U B) matches all strings that either A matches or B
matches (or both)

(AB) matches all strings that have a first part that A
matches followed by a second part that B matches

A* matches all strings that have any number of strings
(even 0) that A matches, one after another

') AN) \g

Examples (s, '73

 All blnary strings that have an even 1 S
%\ N0 @

A
O (o710) 11’\6

(Ou(!@")*, um\e 70)
« All binary strings that don’t contain 101 L/! 0

N ¢ k@@
/é ())"

nomé 0 ((*@0@*1*)*’u|*)y/o*

(g

\\ OQ© \(

Examples

* All binary strings that have an even # of 1’s

e.g., 0*(10*10*)*

* All binary strings that don’t contain 101

e.g., 0%(1 U 000*)* 0*

Limitations of Regular Expressions

* Not all languages can be specified by regular
expressions

* Even some easy things like
— Palindromes
— Strings with equal number of O's and 1’s

 But also more complicated structures in
programming languages
— Matched parentheses
— Properly formed arithmetic expressions
— efc.

Context-Free Grammars

* A Context-Free Grammar (CFG) is given by a finite set
of substitution rules involving

— A finite set V of variables that can be replaced
— Alphabet X of terminal symbols that can’t be replaced
— One variable, usually S, is called the start symbol

* The rules involving a variable A are written as
A—>wy | wy |-]w

where each w; is a string of variables and terminals —
thatisw, € (VU X)

How CFGs generate strings

* Begin with start symbol S L_S/‘

* If there is some variable A in the current string you
can replace it by one of the w’s in the rules for A

AW | Wy || w,
— Write this as xAy = xwy
— Repeat until no variables left

* The set of strings the CFG generates are all strings
produced in this way that have no variables

1 S\%XZ(S'
S > A A—>€,‘A'

Example Context-Free Grammars

Example: S—0S0 | 181 |Q/|$ | €

4
D1 0)
S= 0505 0110 0110

(’)GJA »\AOM .

Example: S—>0S|S1]|¢
0" 1>

Example Context-Free Grammars

Example: S—>0S0|1S1|0|1]¢

The set of all binary palindromes

Example: S—>0S|S1]|¢

0*1*

Example Context-Free Grammars

Grammar for {0"1™:n = 0}
(all strings with same # of O’s and 1’s with all O’s before 1's)

S_s 05]i.

Example: S —>(S)|SS]|¢
0,0
AL comithy ged - pe—

((())) ()

S= SS > (S)S = (VS
=>

— ((($>YVS=> (O S
(O (S) => U()

Example Context-Free Grammars

Grammar for {0"1™:n = 0}
(all strings with same # of O’s and 1’s with all O’s before 1's)

S—>081]¢
Example: SH>S)]|SS| ¢

The set of all strings of matched parentheses

Simple Arithmetic Expressions

E> E+E|E<E| (E) | x|y|z]|0[|1]2]|3]|4
|5]16]7]8]9

Generate (2*x) +vy

E=> C+p=> E)+E= (EX F)+E
=y (24E)+ B =7 (2x n)+E= (x 0y
Generate x+y=*z in two fundamentally different ways

Eo L =D L+ ExE => X ~ExE> xy YXE=DXyxZ
L= L= Exz=>LCrgxz—> xvbxzoxyxe,

Simple Arithmetic Expressions

E> E+E|E<E| (E) | x|y|z]|0[|1]2]|3]|4
|5]16]7]8]9

Generate (2*x) +vy

E = E+E = (E)*+E = (EXE)+E = (2*E)+E = (2*X)+E = (2*Xx)+y

Generate x+y+*z in two fundamentally different ways

E = E+E = x+E = x+E*E = x+y*E = x+y*z

E = E*E = E+E*E = X+E*E = x+y*E = x+y*z

Parse Trees

Suppose that grammar G generates a string x
* A parse tree of x for G has
— Root labeled S (start symbol of G)

— The children of any node labeled A are labeled by
symbols of w left-to-right for some rule A > w

— The symbols of x label the leaves ordered left-to-right
/1N
0 SO

1 S 1

S—>0S0|1S1|0|1]¢

Parse tree of 01110]

CFGs and recursively-defined sets of strings

* A CFG with the start symbol S as its only variable
recursively defines the set of strings of terminals
that S can generate

e A CFG with more than one variableis a
simultaneous recursive definition of the sets of
strings generated by each of its variables

— Sometimes necessary to use more than one

building precedence in simple arithmetic expressions

 E - expression (start symbol)
e T—term F-—factor |-identifier N- number
E > T|E+T
T — F | F«T
F > (E)|I|N
| —>x|y]|z
N >0|1]|2]|3|4|5|]6|7]|8]|9

Backus-Naur Form (The same thing...)

BNF (Backus-Naur Form) grammars

— Originally used to define programming
languages

— Variables denoted by long nhames in angle
brackets, e.g.

<identifier>, <if-then-else-statement>,
<assignment-statement>, <condition>

::= used instead of —

BNF for C

statement:
((identifier | "case"™ constant—-expression | "default™) ":")¥*
(expression? ";" |
block |
"if" " (" expression ")" statement |
"if™ " (" expression ")" statement "else™ statement |
"switch™ " (" expression ")" statement |
"while"™ " (" expression ")}" statement |
"do" statement "while™ " (" expression ")}" ";" |
"for™ " (" expression? ";" expression? ";" expression? ")" statement |
"goto" identifier ";™ |
"continue™ ";" |
"break™ ";" |

L LI |

"return" expression? ";

block: "{" declaration* statement* ™}"

eXpression:
assignment—-expression

assignment—-expression: |

unary-expression (
IfI:'" | TI*:TI | Ifllll,l':'fl | m %:TI | 'fl_l_:'" | '"_:'fl | TI{{:TI | TI}}:TI | mn &:TI |

L LI —) | Ll | — T

)

}* conditional-expression

conditional-expression:
logical-OR-expression ("2" expression ":" conditional-expression }7?

Parse Trees

Back to middle school:
<sentence>::=<noun phrase><verb phrase>
<noun phrase>::==<article><adjective><noun>
<verb phrase>::=<verb><adverb> | <verb><object>
<object>::=<noun phrase>

Parse:
The yellow duck squeaked loudly
The red truck hit a parked car

