CSE 311: Foundations of Computing

Lecture 19: Regular Expressions &
Context-Free Grammars

|, See u\‘la\w\-ﬁcj
Hw b ol I0™ ANNUAL

. SYMPOSIUM oN GRAMMAR!
“‘iﬁmf\u\%—?; ) FORMAL LANGUAGES | )
am Connvtf 1 |R
(n) ooy -ﬁﬂf". :?E“)\’\ q E

1’.]4( y v ot E— ff
[L(f {LM S-rgs n D h.";? ﬁ oy
an a2 /|

\/k) W MM 5\/\(4 V\/;\‘\_
L/@UU‘, an A WM [Audience looks around]
£y =~ rLTﬂ,J{_ o “What is going on? There must be some context we’re missing”

% T L e L Afont of exan

- 'ﬁo L(o\() /59 ian %rj E/;‘d .




Review: each regular expression is a “pattern”

€ matches the empty string
a matches the one character string a

(A U B) matches all strings that either A matches or B

matches (or both) o e

. . ConC ca{-wu/\,\
(AB) matches all strings that have a first part that A

matches followed by a second part that B matches

A* matches all strings that have any number of strings
(even 0) that A matches, one after another

([Lleewe | SHor



Examples

e All binary strings that have an even # of 1’s

X-
(0l - D* (11Y0%) % 1o
s (0¥ (0% 1 0M)" L &l SEPRCAD I
/ A N ¥\ ¥
va i(\\ ((\O\;Ll\>> ’ 6‘&(10*’8&)&‘))1 ol

All binary strings that don’t contain 101



Examples

e All binary strings that have an even # of 1’s

e.g., 0*(10*10%*)* <
R

* All binary strings that don’t contain 101

i
e.g., 0*(1 U 000*)* 0*

R

O
/)

~—



Limitations of Regular Expressions

* Not all languages can be specified by regular
expressions

 Even some easy things like
— Palindromes
— Strings with equal number of O's and 1's < —

 But also more complicated structures in
programming languages
— Matched parentheses
— Properly formed arithmetic expressions
— etc.



Context-Free Grammars

* A Context-Free Grammar (CFG) is given by a finite set
of substitution rules involving

— A finite set V of variables that can be replaced
— Alphabet X of terminal symbols that can’t be replaced
— One variable, usually S, is called the start symbol

—_—

 The rules involving a variable A are written as
A—wy | wy |- ]w

where each w; is a string of variables and terminals —
thatisw, € (VU X)"

—



How CFGs generate strings

* Begin with start symbol S

* If there is some variable A in the current string you
can replace it by one of the w’s in the rules for A

—A->w, | w, || w
— Write thisas xAy = XWy
— Repeat until no variables left

* The set of strings the CFG generates are all strings
produced in this way that have no variables




Example Context-Free Grammars

f”{“’\()

Example: S—0S0|1S1|0|1]¢ V= eS]
S= 056 = 0\$10 3044 © $ €
sDefe=oce 552761

Example: S—>0S|S1]|¢

¥ M

O



Example Context-Free Grammars

Example: S—>0S0|1S1|0]|1]¢

The set of all binary palindromes

Example: S—>0S|S1]|¢

0*1*



Example Context-Free Grammars
. L
Grammar for {0"1":n = 0}
(all strings with same # of O’s and 1’s with all O’s before 1's)

P—0p] la S=an)oVv
Sy oSile o
Example: S—>(S)|SS|¢e

Ty S 2 (s)S =2 (5953
D (CHS)S 5N )

j(())(g)

=




Example Context-Free Grammars

Grammar for {0"1™":n = 0}
(all strings with same # of O’s and 1’s with all O’s before 1's)

S—0S1|¢

4 (
,JA)

Example: S (S) 1SS | € W%

The set of all strings af matched parentheses

e,




Simple Arithmetic Expressions

E—> E+E|E<E| (E) | x|y|z|O0|1]2]|3]4
15161789

Generate (2*xx) t+vy
=) tie= B4y » (€)Y =) (E*@*‘?
2 (g 2 (1
Generate xt+y+*z in two fundamentally different ways
T D) LAT D) YAHE D) YHEAE =) Xpysb D X+ % T

-, = C £ x2
N kg€ Eda = ETEF
)% > —})) 5@#67&%:\ 7\“"’73{_%



Simple Arithmetic Expressions

E—> E+E|E<E| (E) | x|y|z|O0|1]2]|3]4

| 5116|7819 £
A TN
£+

Generate (2xx) +y ) <—</*
ﬂ

-

\

=3
E = E+E = (E)*+E = (E*E)+E = (2*E)+E = (2*X)+E = (2*Xx)+y

<

Generate xt+y+*z in two fundamentally different ways

E = E+E = x+E = Xx+E*E = x+y*E = x+y*z

E = E*E = E+E*E = X+E*E = x+y*E = x+y*z



Parse Trees

Suppose that grammar G generates a string x
A parse tree of x for G has
— Root labeled S (start symbol of G)

— The children of any node labeled A are labeled by
symbols of w left-to-right for some rule A > w

— The symbols of x label the leaves ordered left-to-right

/|\
/|\

Parse tree of 01110 :‘l

S—0S0|1S1|0|1]|¢



CFGs and recursively-defined sets of strings

* A CFG with the start symbol S as its only variable
recursively defines the set of strings of terminals
that S can generate S

o

XY
e A CFG with more than one variable is a
simultaneous recursive definition of the sets of
strings generated by each of its variables

— Sometimes necessary to use more than one



building precedence in simple arithmetic expressions

 E-—expression (start symbol)
e T—term F-—factor |-—identifier N- number
E > T|E+T
T — F| F«T
F - (E)|I|N
| —>x|y]|z
N ->0|1]|2]|3|4|5|6|7]|8]|9



Backus-Naur Form (The same thing...)

BNF (Backus-Naur Form) grammars

— Originally used to define programming
languages

— Variables denoted by long names in angle
brackets, e.g.

<identifier>, <if-then-else-statement>,
<assignment-statement>, <condition>

::= used instead of —



BNF for C

statement:
((identifier | "case™ constant-expression | "default™) ":")*
(expression? ";" |
block |
"if" " (" expression ")" statement |
"if" "(" expression ")" statement "else™ statement |
"switch™ "(" expression ")" statement |
"while™ " (" expression ")" statement |
"do" statement "while™ " (" expression ")" ";" |
"for™ " (" expression? ":;" expression? ";" expression? ")" statemsnt |
"goto™ identifier ";" |
"continue™ ";" |
"break™ ";" |
"return" expression? ";"
)
block: "{" declaration* statement®* ™"}"
expression:
assignment-expression$
assignment-expression: |
unary-expression
| "e=" ] U= O MEEET ) Ta=T |

Ifllll,l':'" | TI%:TI | Ifl_|_:'fl

| | p— | | ™™g T |

L L p— ) | | L) | — T

)

}* conditional-expression

conditional-expression:
":" conditional-expression )?

logical-OR-expression ( "?" expression



Parse Trees

Back to middle school:
<sentence>::=<noun phrase><verb phrase>
<noun phrase>::==<article><adjective><noun>
<verb phrase>::=<verb><adverb> | <verb><object>
<object>::=<noun phrase>

Parse:
The yellow duck squeaked loudly
The red truck hit a parked car



