CSE 311: Foundations of Computing

Lecture 18: Structural Induction, Regular expressions

ML dderas

OH NO! THE KILLER || BUT TD FIND THEM WE'D HAVE T0 SEARCH

WHENEVER T LEARN A | | MUST HAVE FOLLOWED| | THROUGH 200 MB OF EMAILS LODKING FOR
New SKILL I concoCT | | HER ON vamﬂc-ml SOMETHING FORMATTED LIKE AN ADDRESS!

scswhmswmr : 1O e IT5 HOPELESS] . ¥ -G Q
LETS ME SAVE THE DAY, f % 4
]\/\LU\ﬁA‘\ %l

qﬂa}\t

_ T KNOWREGUAR L= , -~
EVERYBADY STWD BACK Qs ()

37

ﬁ: K%/i al 2; 6

((b\) 74
4/’ /06 ~10




Recursive Definitions of Sets: General Form

Recursive definition

— Basis step: Some specific elements are in S

— Recursive step: Given some existing named
elements in S some new objects constructed
from these named elements are also in S.

— Exclusion rule: Every element in S follows from

the basis step and a finite number of recursive
steps



Structural Induction

How to prove V x € S, P(x) is true:

Base Case: Show that P(u) is true for all specifi
elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some
arbitrary values of each of the existing named
elements mentioned in the Recursive step

Inductive Step: Prove that P(w) holds for each of the
new elements w constructed in the Recursive step
using the named elements mentioned in the Inductive
Hypothesis

Conclude that V x € S, P(x)



Strings

 An alphabet X is any finite set of characters

 The set X* of strings over the alphabet X is
defined by

— Basis: € € X (e is the empty string w/ no chars)

— Recursive: if@, ae X, thenwae 2*
2 o



Functions on Recursively Defined Sets (on X%)

Length:
len(g) =0

len(wa)=1+len(w)forweX* aeX
- \

Reversal:
eR=¢g
(wa)R=awRforweX*, aeX

Concatenation:
xec=xforx€ X"
xewa=(xew)aforxeX* aeX

Number of ¢’s in a string:
#(g)=0
# (wc)=# (w)+1forweX”
#(wa)=#(w)forweX ", a€X, azc



Claim: len(xey) = len(x) + len(y) for all x,y € X*

. Let P(y) be “len(xey) = len(x) + len(y) for all x € X*".
We prove P(y) for all y € X* by structural induction.



Claim: len(xey) = len(x) + len(y) for all x,y € X*

Let P(y) be “len(xey) = len(x) + len(y) forall x e X*" .
We prove P(y) for all y € X* by structural induction.

Base Case: y=c.Foranyx € X%, len(xe €) = len(x) = len(x) + len(e)
since len(€)=0. Therefore P(¢g) is true T




Claim: len(xey) = len(x) + len(y) for all x,y € X*

Let P(y) be “len(xey) = len(x) + len(y) forall x e X*" .
We prove P(y) for all y € X* by structural induction.

Base Case: y=¢c.Forany x € X%, len(xe €) = len(x) = len(x) + len(g)
since len(€)=0. Therefore P(¢g) is true

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
weY”

Inductive Step: |Goal: Show that P(wa) is true for every a € X




Clain@-y) = len(x) + len(y) for all x@

Let P(y) be “len(xey) = len(x) + len(y) forall x e X*" .
%prove P(y) for all y € X* by structural induction.

Base Case: y=¢c.Forany x € X%, len(xe €) = len(x) = len(x) + len(g)
since len(g)=0. Therefore P(g) is true

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
weY” o

Inductive Step: |Goal: Show that P(wa) is true for every a € X

Leta €X. Letx EX”. Then len(xewa) = len((xew)a) by defn of e
o = len(xew)+1 by defn of len
= len(x)+len(w)+1 by LH.
= len(x)+len(wa) by defn of len

Therefore len(xewa)= len(x)+len(wa) for all x € X*, so P(wa) is true.

So, by induction len(xey) = len(x) + len(y) for all x,y € X~



Rooted Binary Trees

* Basis: .
* Recursive step:

Is a rooted binary tree



Defining Functions on Rooted Binary Trees

1 + size(T,) + size(T,)

=1 + max{height(T,), height(T,)}



Claim: For every rooted binary tree T, size(T) < 2heightT) +1 _ 1
\_ -




Claim: For every rooted binary tree T, size(T) < 2heightT) +1 _ 1

1. Let P(T) be “size(T) < 2heisht(M+1_1” We prove P(T) for all rooted binary
trees T by structural induction.

2. Base Case: size(*)=1, height(¢)=0 and 1=2_1:1=20+1—1 so P(e) is true.

e\ i v




Claim: For every rooted binary tree T, size(T) < 2heightT) +1 _ 1

1. Let P(T) be “size(T) < 2heisht(M+1_1” We prove P(T) for all rooted binary
trees T by structural induction.
2. Base Case: size(®)=1, height(*)=0 and 1=21-1=2%1-1 so P(e) is true.
3. Inductive Hypothesis: Suppose that P(T,) and P(T,) are true for some
rooted binary trees T, and T,.

4. Inductive Step: Goal: Prove P( \F/\ )._|




Claim: For every rooted binary tree T, size(T) < 2heightT) +1 _ 1

1. Let P(T) be “size(T) < 2heisht(M+1_1” We prove P(T) for all rooted binary
trees T by structural induction.
2. Base Case: size(®)=1, height(*)=0 and 1=21-1=2%1-1 so P(e) is true.
3. Inductive Hypothesis: Suppose that P(T,) and P(T,) are true for some
rooted binary trees T, and T,.

4. Inductive Step: Goal: Prove P( \F/\ )._|

..............

T bylHforT,andT,

— 7heigh heigh
LogLir = 20T el ]

< 2 {WMQ < 2(2max(height(Tl),height(TZ))+1) -1
/,—-
5 b (T4 )/ _ z(zheight(.___,f,ﬁ;_& )) - 1 = 2heignt FO N
which is what we wanted to show.

5. So, the P(T) is true for all rooted bin. trees by structural induction.



Languages: Sets of Strings

* Sets of strings that satisfy special properties

are called languages. Examples:

— English sentences

— Syntactically correct Java/C/C++ programs

— Y7 = All strings over alphabet X~ o1 hiemy
— Palindromes over X s’
— Binary strings that don’'t have a O aftera 1
— Legal variable names. keywords in Java/C/C++

— Binary strings with an equal # of O’'s and 1’s



Regular Expressions

Regular expressions over X
 Basis:

@, € are regular expressions

;s; regular expression for any ae P>

. Recursive step:
— If A and B are regular expressions then so are:
(AU B)—
(AB)
A*



Each Regular Expression is a “pattern”

€ matches the empty string L)
a matches the one character string a Qe

(A U B) matches all strings that either A matches

or B matches (or both) ((auw)b) ?Ef’u

(AB) matches all strings that have a first part that
A matches followed by a second part that B

matches

A* matches all strings that have any number of
strings (even 0) that A matches, one after
another



Examples

001 * J
_
zbb , 6&9\/ oQ’J\l/OOlH
O*1*



Examples

001*

{00, 001, 0011, 00111, ...}

O*1*

Any number of O’s followed by any number of 1’s



Examples

Oul)00ulo

S@Czbb/ @O(D/ /@oo//o/oj

(0%1%)* foo)



Examples

Oul)00ulo

{0000, 0010, 1000, 1010}

(0*1*)*

All binary strings



Examples

(Ou1)*0110(0uU 1)*
fy iy oy Toad by O 10

(00U 11)* (01010 U 10001) (O U 1)*

.



Examples

(Ou1)*0110(0uU 1)*

Binary strings that contain “0110”

(00U 11)* (01010 U 10001) (O U 1)*

Binary strings that begin with pairs of characters
followed by “01010” or “10001”



Regular Expressions in Practice

¢ Used to define the “tokens: e.g., legal variable names,
keywords in programming languages and compilers

 Usedin grep, a program that does pattern matching
searches in UNIX/LINUX

e Pattern matching using regular expressions is an essential

—~

feature of PHP Tecretevyd

* We can use regular expressions in programs to process
strings!




Regular Expressions in Java

* Pattern p = Pattern.compile("a*b");
 Matcher m = p.matcher("aaaaab");

* boolean b = m.matches();
[01] aOoral “startofstring $ end of string
[0-9] anysingledigit \. period \, comma \- minus
any single character

ab a followed by b (AB) —— (o covtih

(al|b) aorb (AUB) —
a? zero or one of a (AU €) (

a*  zero or more of a A* gt
a+ one or more of a AA*

* eg ~[\-+]1?2[0-91*(\.I\,)?[0-9]+S
General form of decimal number e.g. 9.12 or -9,8 (Europe)



