CSE 311: Foundations of Computing

Lecture 18: Structural Induction, Regular expressions

Midtern

Media 81

95%de

90'S 61

90'S 69

(6) 39

(6) ~20

Recursive Definitions of Sets: General Form

Recursive definition

- Basis step: Some specific elements are in S
- Recursive step: Given some existing named elements in S some new objects constructed from these named elements are also in S.
- Exclusion rule: Every element in S follows from the basis step and a finite number of recursive steps

Structural Induction

How to prove $\forall x \in S, P(x)$ is true:

Bally GENV Keunn If KENV true

Base Case: Show that P(u) is true for all specific elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some arbitrary values of each of the existing named elements mentioned in the Recursive step

Inductive Step: Prove that P(w) holds for each of the new elements w constructed in the Recursive step using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

Strings

- An alphabet ∑ is any finite set of characters
- The set Σ* of strings over the alphabet Σ is defined by
 - **Basis:** $\varepsilon \in \Sigma$ (ε is the empty string w/ no chars)
 - Recursive: if $w \in \Sigma^*$, $a \in \Sigma$, then $wa \in \Sigma^*$

Functions on Recursively Defined Sets (on Σ^*)

Length:

$$len(\varepsilon) = 0$$

 $len(wa) = 1 + len(w)$ for $w \in \Sigma^*$, $a \in \Sigma$

Reversal:

$$\varepsilon^R = \varepsilon$$
(wa)^R = aw^R for w $\in \Sigma^*$, a $\in \Sigma$

Concatenation:

$$x \bullet \varepsilon = x \text{ for } x \in \Sigma^*$$

 $x \bullet wa = (x \bullet w)a \text{ for } x \in \Sigma^*, a \in \Sigma$

Number of c's in a string:

$$\#_{c}(\epsilon) = 0$$
 $\#_{c}(wc) = \#_{c}(w) + 1 \text{ for } w \in \Sigma^{*}$
 $\#_{c}(wa) = \#_{c}(w) \text{ for } w \in \Sigma^{*}, a \in \Sigma, a \neq c$

Let P(y) be "len $(x \cdot y) = len(x) + len(y)$ for all $x \in \Sigma^*$ ". We prove P(y) for all $y \in \Sigma^*$ by structural induction.

Let P(y) be "len $(x \cdot y) = len(x) + len(y)$ for all $x \in \Sigma^*$ ". We prove P(y) for all $y \in \Sigma^*$ by structural induction.

Base Case: $y = \varepsilon$. For any $x \in \Sigma^*$, $len(x \cdot \varepsilon) = len(x) = len(x) + len(\varepsilon)$ since $len(\varepsilon) = 0$. Therefore $P(\varepsilon)$ is true

Let P(y) be "len $(x \cdot y) = len(x) + len(y)$ for all $x \in \Sigma^*$ ". We prove P(y) for all $y \in \Sigma^*$ by structural induction.

Base Case: $y = \varepsilon$. For any $x \in \Sigma^*$, $len(x \cdot \varepsilon) = len(x) = len(x) + len(\varepsilon)$ since $len(\varepsilon) = 0$. Therefore $P(\varepsilon)$ is true

Inductive Hypothesis: Assume that P(w) is true for some arbitrary $w \in \Sigma^*$

Inductive Step: Goal: Show that P(wa) is true for every $a \in \Sigma$

Let P(y) be "len $(x \cdot y) = len(x) + len(y)$ for all $x \in \Sigma^*$ ". We prove P(y) for all $y \in \Sigma^*$ by structural induction.

Base Case: $y = \varepsilon$. For any $x \in \Sigma^*$, $len(x \bullet \varepsilon) = len(x) = len(x) + len(\varepsilon)$ since $len(\epsilon)=0$. Therefore $P(\epsilon)$ is true

Inductive Hypothesis: Assume that P(w) is true for some arbitrary $w \in \Sigma^*$

Inductive Step: Goal: Show that P(wa) is true for every $a \in \Sigma$

Let $a \in \Sigma$. Let $x \in \Sigma^*$. Then $len(x \cdot wa) = len((x \cdot w)a)$ by defn of \bullet

= len(x•w)+1 by defn of len = len(x)+len(w)+1 by I.H. = len(x)+len(wa) by defn of len

Therefore $len(x \cdot wa) = len(x) + len(wa)$ for all $x \in \Sigma^*$, so P(wa) is true.

So, by induction len(x•y) = len(x) + len(y) for all x,y $\in \Sigma^*$

Rooted Binary Trees

Basis:

- is a rooted binary tree
- Recursive step:

Defining Functions on Rooted Binary Trees

• size(\bullet) = 1

• height(•) = 0

• height
$$(T_1)$$
 = 1 + max{height(T_1), height(T_2)}

Claim: For every rooted binary tree T, $size(T) \le 2^{height(T) + 1} - 1$

Claim: For every rooted binary tree T, size(T) $\leq 2^{\text{height}(T) + 1} - 1$

- **1.** Let P(T) be "size(T) $\leq 2^{height(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: size(\bullet)=1, height(\bullet)=0 and 1=2¹-1=2⁰⁺¹-1 so P(\bullet) is true.

Claim: For every rooted binary tree T, size(T) $\leq 2^{\text{height}(T) + 1} - 1$

- **1.** Let P(T) be "size(T) $\leq 2^{\text{height}(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: $size(\bullet)=1$, $height(\bullet)=0$ and $1=2^{1}-1=2^{0+1}-1$ so $P(\bullet)$ is true.
- 3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2 .
- 4. Inductive Step: Goal: Prove P().

Claim: For every rooted binary tree T, size(T) $\leq 2^{\text{height}(T) + 1} - 1$

- **1.** Let P(T) be "size(T) $\leq 2^{\text{height}(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: $size(\bullet)=1$, $height(\bullet)=0$ and $1=2^{1}-1=2^{0+1}-1$ so $P(\bullet)$ is true.
- 3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2 .

4. Inductive Step:

By defn, size(

$$T_1$$
) = 1+size(T_1)+size(T_2)

 $= 1 + 2^{\text{height}(T_1)+1} - 1 + 2^{\text{height}(T_2)+1} - 1$

by IH for T_1 and T_2
 $= 2^{\text{height}(T_1)+1} + 2^{\text{height}(T_2)+1} - 1$
 $= 2(2^{\text{max}(\text{height}(T_1), \text{height}(T_2))+1}) - 1$
 $= 2(2^{\text{height}(T_1), \text{height}(T_2))+1}) - 1$

which is what we wanted to show.

5. So, the P(T) is true for all rooted bin. trees by structural induction.

Languages: Sets of Strings

- Sets of strings that satisfy special properties are called *languages*. Examples:
 - English sentences
 - Syntactically correct Java/C/C++ programs Soil) bihang Stry
 - $-\Sigma^*$ = All strings over alphabet Σ
 - Palindromes over Σ
 - Binary strings that don't have a 0 after a 1
 - Legal variable names. keywords in Java/C/C++
 - Binary strings with an equal # of 0's and 1's

Regular Expressions

Regular expressions over Σ

Basis:

- Recursive step:
 - If A and B are regular expressions then so are:

```
(A ∪ B)
(AB)
A*
```

Each Regular Expression is a "pattern"

```
E matches the empty string

a matches the one character string a

(A U B) matches all strings that either A matches or B matches (or both)

(AB) matches all strings that have a first part that
```

- (AB) matches all strings that have a first part that A matches followed by a second part that B matches
- A* matches all strings that have any number of strings (even 0) that A matches, one after another

001*

{00, 001, 0011, 00111, ...}

0*1*

Any number of 0's followed by any number of 1's

$$(0 \cup 1) \ 0 \ (0 \cup 1) \ 0$$

$$(00)^{4}$$

$$(0 \cup 1) \ 0 \ (0 \cup 1) \ 0$$

{0000, 0010, 1000, 1010}

All binary strings

 $(0 \cup 1)$ * $0110 (0 \cup 1)$ *

Any Guy they that contany 0110

 $(00 \cup 11)*(01010 \cup 10001)(0 \cup 1)*$

$$(0 \cup 1)$$
* $0110 (0 \cup 1)$ *

Binary strings that contain "0110"

$$(00 \cup 11)*(01010 \cup 10001)(0 \cup 1)*$$

Binary strings that begin with pairs of characters followed by "01010" or "10001"

Regular Expressions in Practice

- Used to define the "tokens": e.g., legal variable names, keywords in programming languages and compilers
- Used in grep, a program that does pattern matching searches in UNIX/LINUX
- Pattern matching using regular expressions is an essential feature of PHP
- We can use regular expressions in programs to process strings!

Regular Expressions in Java

```
Pattern p = Pattern.compile("a*b");
  Matcher m = p.matcher("aaaaab");
boolean b = m.matches();
   [01] a 0 or a 1 ^ start of string $ end of string
   [0-9] any single digit \. period \, comma \- minus
          any single character
                                (AB) Concatenation
   ab a followed by b
                                (A \cup B) \leftarrow uuu
   (a|b) a or b
   a? zero or one of a (A \cup E) a* zero or more of a A^* \subset \mathcal{I}
   a+ one or more of a AA*
e.g. ^[\-+]?[0-9]*(\.|\,)?[0-9]+$
       General form of decimal number e.g. 9.12 or -9,8 (Europe)
```