
CSE 311: Foundations of Computing

Lecture 16:  Recursion & Strong Induction 

Applications: Fibonacci & Euclid 



More Recursive Definitions

Suppose that ℎ: ℕ → ℝ.  

Then we have familiar summation notation: 

σ𝑖=0
0 ℎ 𝑖 = ℎ(0)

σ𝑖=0
𝑛+1 ℎ 𝑖 = ℎ 𝑛 + 1 + σ𝑖=0

𝑛 ℎ 𝑖 for 𝑛 ≥ 0

There is also product notation:  

ς𝑖=0
0 ℎ 𝑖 = ℎ(0)

ς𝑖=0
𝑛+1 ℎ 𝑖 = ℎ(𝑛 + 1) ∙ ς𝑖=0

𝑛 ℎ 𝑖 for 𝑛 ≥ 0



Fibonacci Numbers

𝑓0 = 0
𝑓1 = 1
𝑓𝑛 = 𝑓𝑛−1 + 𝑓𝑛−2 for all 𝑛 ≥ 2



Strong Inductive Proofs In 5 Easy Steps

1. “Let 𝑃(𝑛) be... . We will show that 𝑃(𝑛) is true for all 

integers 𝑛 ≥ 𝑏 by strong induction.”

2. “Base Case:” Prove 𝑃(𝑏)

3. “Inductive Hypothesis:

Assume that for some arbitrary integer 𝑘 ≥ 𝑏,

𝑃(𝑗) is true for every integer 𝑗 from 𝑏 to 𝑘”   

4. “Inductive Step:” Prove that 𝑃(𝑘 + 1) is true:

Use the goal to figure out what you need. 

Make sure you are using I.H. (that 𝑃(𝑏), … , 𝑃(𝑘) are true)

and point out where you are using it.                           

(Don’t assume 𝑃(𝑘 + 1) !!)

5. “Conclusion: 𝑃(𝑛) is true for all integers 𝑛 ≥ 𝑏”



Bounding Fibonacci I:  𝑓𝑛 < 2𝑛 for all 𝑛 ≥ 0

𝒇𝟎 = 𝟎 𝒇𝟏 = 𝟏
𝒇𝒏 = 𝒇𝒏−𝟏 + 𝒇𝒏−𝟐 for all 𝒏 ≥ 𝟐



Bounding Fibonacci I:  𝑓𝑛 < 2𝑛 for all 𝑛 ≥ 0

1. Let P(n) be “fn < 2n ”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.

2. Base Case: f0=0 < 1= 20 so P(0) is true.

3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 0, P(j) is true for every integer j from 0 to k.

4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 ≤ 2k+1

Case k+1 = 1:  Then f1 = 1 ≤ 21 so P(k+1) is true here.

Case k+1 ≥ 2:  Then fk+1 = fk +  fk-1 by definition

≤ 2k + 2k-1 by the IH

≤ 2k + 2k = 2∙2k  = 2k+1

so P(k+1) is true in this case.

5.    Therefore by strong induction, fn ≤ 2n for all integers n ≥ 0.

𝒇𝟎 = 𝟎 𝒇𝟏 = 𝟏
𝒇𝒏 = 𝒇𝒏−𝟏 + 𝒇𝒏−𝟐 for all 𝒏 ≥ 𝟐



Bounding Fibonacci I:  𝑓𝑛 < 2𝑛 for all 𝑛 ≥ 0

1. Let P(n) be “fn < 2n ”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.

2. Base Case: f0=0 < 1= 20 so P(0) is true.

3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 0, P(j) is true for every integer j from 0 to k.

4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 < 2k+1

Case k+1 = 1:  Then f1 = 1 ≤ 21 so P(k+1) is true here.

Case k+1 ≥ 2:  Then fk+1 = fk +  fk-1 by definition

≤ 2k + 2k-1 by the IH

≤ 2k + 2k = 2∙2k  = 2k+1

so P(k+1) is true in this case.

5.    Therefore by strong induction, fn ≤ 2n for all integers n ≥ 0.

𝒇𝟎 = 𝟎 𝒇𝟏 = 𝟏
𝒇𝒏 = 𝒇𝒏−𝟏 + 𝒇𝒏−𝟐 for all 𝒏 ≥ 𝟐



Bounding Fibonacci I:  𝑓𝑛 < 2𝑛 for all 𝑛 ≥ 0

1. Let P(n) be “fn < 2n ”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.

2. Base Case: f0=0 < 1= 20 so P(0) is true.

3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 0, P(j) is true for every integer j from 0 to k.

4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 < 2k+1

Case k+1 = 1:  Then f1 = 1 ≤ 21 so P(k+1) is true here.

Case k+1 ≥ 2: Then fk+1 = fk +  fk-1 by definition

≤ 2k + 2k-1 by the IH

≤ 2k + 2k = 2∙2k  = 2k+1

so P(k+1) is true in this case.

5.    Therefore by strong induction, fn ≤ 2n for all integers n ≥ 0.

𝒇𝟎 = 𝟎 𝒇𝟏 = 𝟏
𝒇𝒏 = 𝒇𝒏−𝟏 + 𝒇𝒏−𝟐 for all 𝒏 ≥ 𝟐



Bounding Fibonacci I:  𝑓𝑛 < 2𝑛 for all 𝑛 ≥ 0

1. Let P(n) be “fn < 2n ”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.

2. Base Case: f0=0 < 1= 20 so P(0) is true.

3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 0, P(j) is true for every integer j from 0 to k.

4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 < 2k+1

Case k+1 = 1:  Then f1 = 1 < 2 = 21 so P(k+1) is true here.

Case k+1 ≥ 2:  Then fk+1 = fk +  fk-1 by definition

< 2k + 2k-1 by the IH since k-1 ≥ 0                        
< 2k + 2k = 2∙2k  = 2k+1

so P(k+1) is true in this case.

These are the only cases so P(k+1) follows.

5. Therefore by strong induction, 

fn < 2n for all integers n ≥ 0.
𝒇𝟎 = 𝟎 𝒇𝟏 = 𝟏
𝒇𝒏 = 𝒇𝒏−𝟏 + 𝒇𝒏−𝟐 for all 𝒏 ≥ 𝟐



Bounding Fibonacci II:  𝑓𝑛 ≥ 2 Τ𝑛 2 − 1 for all 𝑛 ≥ 2

𝒇𝟎 = 𝟎 𝒇𝟏 = 𝟏
𝒇𝒏 = 𝒇𝒏−𝟏 + 𝒇𝒏−𝟐 for all 𝒏 ≥ 𝟐



Bounding Fibonacci II:  𝑓𝑛 ≥ 2 Τ𝑛 2 − 1 for all 𝑛 ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 

integers n ≥ 2 by strong induction.

2. Base Case: f2 = f1 + f0 = 1  and 22/2 – 1 = 20 = 1 so P(2) is true.

3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 2, P(j) is true for every integer j from 2 to k.

4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 ≥ 2(k+1)/2 -1

Case k+1 = 3:  Then fk+1 = f3 = f2 + f1 =2 ≥ 21/2 = 23/2-1=2(k+1)/2 -1

Case k+1 ≥ 4:    fk+1 = fk +  fk-1 by definition

≥ 2k/2-1 + 2(k-1)/2-1  by the IH since k-1 ≥ 2                  
≥ 2(k-1)/2-1 + 2(k-1)/2-1 = 2(k-1)/2 = 2(k+1)/2 -1

So P(k+1) is true in both cases.

5. Therefore by strong induction, fn ≥ 2n/2 -1 for all integers n ≥ 0.

𝒇𝟎 = 𝟎 𝒇𝟏 = 𝟏
𝒇𝒏 = 𝒇𝒏−𝟏 + 𝒇𝒏−𝟐 for all 𝒏 ≥ 𝟐



Bounding Fibonacci II:  𝑓𝑛 ≥ 2 Τ𝑛 2 − 1 for all 𝑛 ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 

integers n ≥ 2 by strong induction.

2. Base Case: f2 = f1 + f0 = 1  and 22/2 – 1 = 20 = 1 so P(2) is true.

3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 2, P(j) is true for every integer j from 2 to k.

4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 ≥ 2(k+1)/2 -1

Case k+1 = 3:  Then fk+1 = f3 = f2 + f1 =2 ≥ 21/2 = 23/2-1=2(k+1)/2 -1

Case k+1 ≥ 4:    fk+1 = fk +  fk-1 by definition

≥ 2k/2-1 + 2(k-1)/2-1  by the IH since k-1 ≥ 2 
≥ 2(k-1)/2-1 + 2(k-1)/2-1 = 2(k-1)/2 = 2(k+1)/2 -1

So P(k+1) is true in both cases.

5. Therefore by strong induction, fn ≥ 2n/2 -1 for all integers n ≥ 0.

𝒇𝟎 = 𝟎 𝒇𝟏 = 𝟏
𝒇𝒏 = 𝒇𝒏−𝟏 + 𝒇𝒏−𝟐 for all 𝒏 ≥ 𝟐

No need for cases for the definition here:

fk+1 = fk + fk-1  since k+1 ≥ 2
Now just want to apply the IH to get P(k) and P(k-1):
Problem:  Though we can get P(k) since k ≥ 2,

k-1 may only be 1 so we can’t conclude P(k-1)
Solution: Separate cases for when k-1=1 (or k+1=3).



Bounding Fibonacci II:  𝑓𝑛 ≥ 2 Τ𝑛 2 − 1 for all 𝑛 ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 

integers n ≥ 2 by strong induction.

2. Base Case: f2 = f1 + f0 = 1  and 22/2 – 1 = 20 = 1 so P(2) is true.

3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 2, P(j) is true for every integer j from 2 to k.

4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 ≥ 2(k+1)/2 -1

Case k = 2:  Then fk+1 = f3 = f2 + f1 =2 ≥ 21/2 = 23/2-1=2(k+1)/2 -1

Case k ≥ 3:    fk+1 = fk +  fk-1 by definition

≥ 2k/2-1 + 2(k-1)/2-1  by the IH since k-1 ≥ 2   
≥ 2(k-1)/2-1 + 2(k-1)/2-1 = 2(k-1)/2 = 2(k+1)/2 -1

So P(k+1) is true in both cases.

5. Therefore by strong induction, fn ≥ 2n/2 -1 for all integers n ≥ 0.

𝒇𝟎 = 𝟎 𝒇𝟏 = 𝟏
𝒇𝒏 = 𝒇𝒏−𝟏 + 𝒇𝒏−𝟐 for all 𝒏 ≥ 𝟐



Bounding Fibonacci II:  𝑓𝑛 ≥ 2 Τ𝑛 2 − 1 for all 𝑛 ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 

integers n ≥ 2 by strong induction.

2. Base Case: f2 = f1 + f0 = 1  and 22/2 – 1 = 20 = 1 so P(2) is true.

3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 2, P(j) is true for every integer j from 2 to k.

4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 ≥ 2(k+1)/2 -1

Case k = 2:  Then fk+1 = f3 = f2 + f1 =2 ≥ 21/2 = 23/2-1=2(k+1)/2 -1

Case k ≥ 3:   fk+1 = fk +  fk-1 by definition

≥ 2k/2-1 + 2(k-1)/2-1  by the IH since k-1 ≥ 2      
≥ 2(k-1)/2-1 + 2(k-1)/2-1 = 2(k-1)/2 = 2(k+1)/2 -1

So P(k+1) is true in both cases.

5. Therefore by strong induction, fn ≥ 2n/2 -1 for all integers n ≥ 0.

𝒇𝟎 = 𝟎 𝒇𝟏 = 𝟏
𝒇𝒏 = 𝒇𝒏−𝟏 + 𝒇𝒏−𝟐 for all 𝒏 ≥ 𝟐



Bounding Fibonacci II:  𝑓𝑛 ≥ 2 Τ𝑛 2 − 1 for all 𝑛 ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 

integers n ≥ 2 by strong induction.

2. Base Case: f2 = f1 + f0 = 1  and 22/2 – 1 = 20 = 1 so P(2) is true.

3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 2, P(j) is true for every integer j from 2 to k.

4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 ≥ 2(k+1)/2 -1

Case k = 2:  Then fk+1 = f3 = f2 + f1 =2 ≥ 21/2 = 23/2-1=2(k+1)/2 -1

Case k ≥ 3:    fk+1 = fk +  fk-1 by definition

≥ 2k/2-1 + 2(k-1)/2-1  by the IH since k-1 ≥ 2                     
≥ 2(k-1)/2-1 + 2(k-1)/2-1 = 2(k-1)/2 = 2(k+1)/2 -1

So P(k+1) is true in both cases.

5. Therefore by strong induction, fn ≥ 2n/2 -1 for all integers n ≥ 0.

𝒇𝟎 = 𝟎 𝒇𝟏 = 𝟏
𝒇𝒏 = 𝒇𝒏−𝟏 + 𝒇𝒏−𝟐 for all 𝒏 ≥ 𝟐



Running time of Euclid’s algorithm

Theorem: Suppose that Euclid’s Algorithm takes 𝑛 steps

for gcd(𝑎, 𝑏) with 𝑎 ≥ 𝑏 > 0.  Then, 𝑎 ≥ 𝑓𝑛+1.

An informal way to get the idea: Consider an n step gcd
calculation starting with rn+1=a and rn=b:

rn+1 =   qnrn +  rn-1

rn = qn-1rn-1 + rn-2

…
r3 =   q2r2 + r1

r2 =   q1r1

Now r1 ≥ 1 and each qk must be ≥ 1.    If we replace all the

qK’s by 1 and replace r1 by 1 , we can only reduce the rk’s.  

After that reduction, rk=fk for every k.

For all k ≥ 2, rk-1= rk+1 mod rk



Running time of Euclid’s algorithm

Theorem: Suppose that Euclid’s Algorithm takes 𝑛 steps

for gcd(𝑎, 𝑏) with 𝑎 ≥ 𝑏 > 0.  Then, 𝑎 ≥ 𝑓𝑛+1.

We go by strong induction on n.  

Let P(n) be “gcd(a,b) with a ≥ b>0 takes n steps → a ≥ fn+1” for all n ≥ 1.  

Base Case: n=1   If Euclid’s Algorithm on a, b with a ≥ b > 0  takes 1 step, 

then a=q1b for some q1 and a ≥ b ≥ 1=f2 and P(1) holds

Induction Hypothesis: Suppose that for some integer k ≥ 1, P(j) is true 

for all integers j s.t. 1 ≤ j ≤ k

Inductive Step: We want to show: if gcd(a,b) with a ≥ b > 0 takes k+1 
steps, then a ≥ fk+2.



Running time of Euclid’s algorithm

Induction Hypothesis: Suppose that for some integer k ≥ 1, P(j) is true 

for all integers j s.t. 1 ≤ j ≤ k 
Inductive Step: We want to show: if gcd(a,b) with a ≥ b>0 takes k+1 steps, 

then a ≥ fk+2.

Now if k =1, the two steps of Euclid’s algorithm on a and b are 

given by gcd(a,b)=gcd(b,c)=gcd(c,0)=c where

a = q2b  + c
b = q1c 

and c = a mod b > 0

Also, since a ≥ b we must have q2 ≥ 1. 

So a = q2b + c ≥ b + c ≥ 1+1 = 2 = f3 = fk+2 as required.



Running time of Euclid’s algorithm

Induction Hypothesis: Suppose that for some integer k ≥ 1, P(j) is true 

for all integers j s.t. 1 ≤ j ≤ k 
Inductive Step: We want to show: if gcd(a,b) with a ≥ b>0 takes k+1 steps, 

then a ≥ fk+2.

Next suppose that k ≥ 2 so for the first three steps of Euclid’s 

algorithm on a and b we have gcd(a,b)=gcd(b,c)=gcd(c,d) where

a = qk+1b + c
b  = qk c + d 
c  = qk-1d + e       (c = a mod b , d = b mod c , e = c mod d and d>0)

By definition of mod we have b > c > d>0, gcd(b,c) takes k steps and

gcd(c,d) takes k-1 ≥ 1 steps, so by the IH we have b ≥ fk+1 and c ≥ fk.

Also, since a ≥ b we must have qk+1 ≥ 1. 

So a = qk+1b + c ≥ b + c ≥ fk+1+ fk= fk+2 as required.



Running time of Euclid’s algorithm

Theorem: Suppose that Euclid’s Algorithm takes 𝑛 steps

for gcd(𝑎, 𝑏) with 𝑎 ≥ 𝑏 > 0.  Then, 𝑎 ≥ 𝑓𝑛+1.

Why does this help us bound the running time of Euclid’s 

Algorithm?

We already proved that 𝑓𝑛 ≥ 2 Τ𝑛 2 − 1 so 𝑓𝑛+1 ≥ 2 Τ(𝑛−1) 2

Therefore: if Euclid’s Algorithm takes 𝑛 steps

for gcd(𝑎, 𝑏) with 𝑎 ≥ 𝑏 > 0

then 𝑎 ≥ 2 Τ(𝑛−1) 2

so (𝑛 − 1)/2 ≤ log2 𝑎 or 𝑛 ≤ 1 + 2log2 𝑎
i.e., # of steps ≤ twice the # of bits in 𝑎.



Recursive Definition of Sets

Recursive Definition

• Basis Step: 0 ∈ S

• Recursive Step: If x ∈ S, then x + 2 ∈ S

• Exclusion Rule: Every element in S follows from 

basis steps and a finite number of recursive 

steps.



Recursive Definitions of Sets

Basis:  6 ∈ S, 15 ∈ S
Recursive: If x,y ∈ S, then x+y ∈ S 

Basis:  [1, 1, 0] ∈ S, [0, 1, 1] ∈ S
Recursive: If [x, y, z] ∈ S, then [αx, αy, αz] ∈ S

If [x1, y1, z1] ∈ S and [x2, y2, z2] ∈ S, then

[x1 + x2, y1 + y2, z1 + z2] ∈ S.

Powers of 3:



Recursive Definitions of Sets

Basis:  6 ∈ S, 15 ∈ S
Recursive: If x,y ∈ S, then x+y ∈ S 

Basis:  [1, 1, 0] ∈ S, [0, 1, 1] ∈ S
Recursive: If [x, y, z] ∈ S, then [αx, αy, αz] ∈ S

If [x1, y1, z1] ∈ S and [x2, y2, z2] ∈ S, then

[x1 + x2, y1 + y2, z1 + z2] ∈ S.

Powers of 3:

Basis: 1 ∈ S
Recursive: If x ∈ S, then 3x ∈ S.



Recursive Definitions of Sets: General Form

Recursive definition

– Basis step: Some specific elements are in 𝑆

– Recursive step: Given some existing named 

elements in 𝑆 some new objects constructed 

from these named elements are also in 𝑆.

– Exclusion rule:  Every element in 𝑆 follows from 

basis steps and a finite number of recursive 

steps



Strings

• An alphabet  is any finite set of characters

• The set * of strings over the alphabet  is 

defined by

– Basis: ℇ   (ℇ is the empty string)

– Recursive:  if 𝑤  *, 𝑎  , then 𝑤𝑎  *



Palindromes

Palindromes are strings that are the same 

backwards and forwards

Basis: 

ℇ is a palindrome and any 𝑎 ∈  is a palindrome

Recursive step:

If 𝑝 is a palindrome then 𝑎𝑝𝑎 is a palindrome for

every 𝑎 ∈ 



All Binary Strings with no 1’s before 0’s



All Binary Strings with no 1’s before 0’s

Basis: 

ℇ ∈ S
Recursive:

If x ∈ S, then 0x ∈ S
If x ∈ S, then x1 ∈ S



Function Definitions on Recursively Defined Sets

Length:

len(ℇ) = 0
len(wa) = 1 + len(w) for w ∈ Σ*, a ∈ Σ

Reversal:

ℇR = ℇ
(wa)R = awR for w ∈ Σ*, a ∈ Σ

Concatenation:

x • ℇ = x for x ∈ Σ*

x • wa = (x • w)a for x ∈ Σ*, a ∈ Σ


