CSE 311: Foundations of Computing

Lecture 11: Modular Arithmetic and Applications
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Definition: “a divides b”

Fora € Z,b € Z with a # 0:

a|lbo 3k eZ (b=ka)
\ J

Check Your Understanding. Which of the following are true?

5|1 25 | 5 3|2

5] 1iff1 =05k 25 | 5iff 5 =25k 5|10iff0=5k 3| 2iff2=3k

@ & o5 2

1| 5iff5=1k 5| 25iff 25 = 5k O|5iff5=0k 2| 3iff3=2k
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Division Theorem

Fora € Z,d € Z withd > 0
there exist unique integers q, rwith0 <r <d
g such thata = dqg + . Py

To put it another way, if we divide d into a, we get a
unique quotient g =adiv d
and non-negative remainder r =a mod d

o\:o\a\i—c p=t\F o da4
S pargd -] nz=d el
C' Y

Note:r=z0evenifa<0.
Not quite the same as a%d.




Division Theorem

Division Theorem

Fora € Z,d € Z withd > 0
there exist unique integers q, rwith0 <r <d
g such thata = dqg + . Py

To put it another way, if we divide d into a, we get a
unique quotient g =adiv d
and non-negative remainder r =a mod d

pUbllc class Test2 { ----JGRASP exec: java Test2

public static void main(String args[]) { -1
int a = -5; .
. ----JGRASP: operation complete.
int d = 2; :
System.out.println(a % d);
} Note: r = 0 even if a < 0.

Not quite the same as a%d.




Arithmetic, mod 7

a+.-b=(a+b)mod?7

(@ x b)) mod 7

ax,b




Modular Arithmetic

Definition: “a is congruent to b modulo m”

Fora,b,m € Z withm > 0
a=b(modm) o m|(a —b)

\_

Check Your Understanding. What do each of these mean?
When are they true?

x=0(mod2)  2|*-© 2 |X

-1=219(mod 5)g| .y [\ p - _720
true

yE2(mod7)  7]y-2 Y= FKk+2



Modular Arithmetic

\

Definition: “a is congruent to b modulo m”

Fora,b,m € Z withm > 0
a=b(modm) o m|(a —b)

\_

Check Your Understanding. What do each of these mean?
When are they true?
X =0 (mod 2)

This statement is the same as saying “x is even”; so, any X that is
even (including negative even numbers) will work.

-1=19 (mod 5)
This statement is true. 19 - (-1) = 20 which is divisible by 5
y =2 (mod 7)

This statement is true for yin{...,-12, -5, 2, 9, 16, ...}. In other
words, all y of the form 2+7k for k an integer.



Modular Arithmetic: A Property

Let a, b, m be integers wit > 0.
Then, a = b (mod m)(if and only ifj/a mod m = b mod m.

Suppose that a = b (mod m).\?(/

™m ' C\~L LJ ..r\;*\\o -
\

s° C. _13: ’(lﬂ\ £., Sown \ << '(.
'To-"t L~'”\ s-‘r/tf?s ™ ool A,

- Ic
i:‘wl,oolk'w\c: (L_\, 'Ch\)\nntx m = L.) w..‘ W
,l wm —10 h\aa‘ m

C,a)-lj —

CO\\J'(ASA‘°’\ & ™

Suppose that a mod m = b mod m. —
O\pE m™m (&‘\ a‘u'v W) ¢ Q \“oA wA }’ Oli‘vl\\h‘s“ ll"".
L v m) + b vl w }’J Aivisia i ke

L - M( |
ehmm (O Ny b ddivnm)s 6 maddim = Th ek wo v (& Jivm

O\-)p = ]C ™ ‘eor Sonm_ 'C.

wm ) o~b

CS"UL“*:"‘ . ;-B (_mol 7“) .

L)



Modular Arithmetic: A Property

Let a, b, m be integers with m > 0.
Then, a = b (mod m) if and only if a mod m = b mod m.

Suppose that a = b (mod m).
Then, m | (a - b) by definition of congruence.
So, a - b = km for some integer k by definition of divides.
Therefore, a = b + km.
Taking both sides modulo m we get:
a mod m = (b + km) mod m = b mod m.

Suppose that a mod m = b mod m.
By the division theorem, a = mqg + (a mod m) and
b = ms + (b mod m) for some integers g,s.
Then,a -b = (mq + (a mod m)) - (ms + (b mod m))
= m(q-s) + (a mod m- b modm)
= m(q -s)sinceamodm = bmodm
Therefore, m |(a — b) andso a = b (mod m).



The mod m function vs the = (mod m) predicate

* What we have just shown

— The mod m function takes any a € Z i aps
it to a remainder a mod m € {0,1,..,m ‘

— Imagine grouping together all integers that have
the same value of the mod m function
That is, the same remainder in {0,1,..,m — 1}.

— The = (mod m) predicate compares a,b € Z. It
is true if and only if the mod m function has the
same value on a and on b.

That is, a and b are in the same group.



Modular Arithmetic: Addition Property

Let m be a positive integer. Ifa = b (mod m) and
c = d(modm),thena+c = b+ d (modm)
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Modular Arithmetic: Addition Property

b (mod m) and

Let m be a positive integer. Ifa =
= b+d (modm)

¢c = d(modm), thena+c

Suppose thata = b (mod m) and ¢ = d (mod m). Unrolling
definitions gives us some k such that a - b = km,
and some j such thatc -d = jm.

Adding the equations together gives us
(a+c)- (b+d) = m(k+j). Now, re-applying the definition
of congruence givesusa + ¢ = b + d (mod m).



Modular Arithmetic: Multiplication Property

Let m be a positive integer. If a = b (mod m) and
¢ =d (mod m), then ac = bd (mod m)
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Modular Arithmetic: Multiplication Property

Let m be a positive integer. If a = b (mod m) and
¢ =d (mod m), then ac = bd (mod m)

Suppose that a = b (mod m) and ¢ = d (mod m). Unrolling
definitions gives us some k such that a - b = km,
and some j such thatc -d = jm.

Then, a = km + b and ¢ = jm + d. Multiplying both together
givesus ac = (km+ b)(jm+ d) = kjm? + kmd + bjm + bd.

Re-arranging gives us ac - bd = m(kjm + kd + bj).
Using the definition of congruence gives us ac = bd (mod m).



Example

Let n be an integer.
Prove thatn? = 0 (mod 4) or n? = 1 (mod 4)

Let’s start by looking a a small example:
02=0 =0 (mod 4)
12=1 =1 (mod4)
22=4 =0 (mod 4)
32=9 =1 (mod 4)
42 =16 =0 (mod 4)




Example

Let n be an integer.
Prove thatn? = 0 (mod 4) or n? = 1 (mod 4)
Let’s start by looking a a small example:
—~ i 02=0 =0 (mod4)
12=1 =1 (mod4)

Case 1 (nis even):
n-= 'Z«'C :'or Se

2
nt= Ak 22=4 =0 (mod 4)
32=9 =1 (mod 4)
g | n? 42=16 =0 (mod 4)
hne =0 Q'“ﬂ’( ‘P It looks like
Case 2 (nis odd): h =0 (mod 2) — n2 = 0 (mod 4), and
}\,Q)c-r\ f's( Sem vad le nEj_(mod2)_)n251(mod4).
re = (2)<+‘)Z= L“Clpq"'J-/: L, (lc z-o»'().\-l
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Example

Let n be an integer.

Prove that n? = 0 (mod 4) or n? = 1 (mod 4)

Let’s start by looking a a small example:
02=0 =0 (mod 4)
12=1 =1 (mod4)

Case 1 (n is even):
Suppose n = 0 (mod 2).

Then, n = 2k for some integer k. 22=4 =0 (mod 4)
So, n? = (2k)2 = 4k*. So, by 32-9 =1 (mod 4)
definition of congruence, 42 =16 = 0 (mod 4)
n? = 0 (mod 4).
It looks like
Case 2 (n is odd): n =0 (mod 2) — n? =0 (mod 4), and
Suppose n = 1 (mod 2) ns 1 (mOd 2) — n2 = 1 (mOd 4)

Then, n = 2k + 1 for some integer k.
So,n?=R2k+1)2=4k*+4k+1=4(k*+ k) + 1.
So, by definition of congruence, n? = 1 (mod 4).



n-bit Unsignhed Integer Representation

* Represent integer x as sum of powers of 2:
If Y75 b;2" where each b, € {0,1}

then representationis b, ,...b, b, b,

99=64+32+2+1
18=16+2

* Forn=28:
99: 0110 0011
18: 0001 0010



Sign-Magnitude Integer Representation

n-bit signed integers
Suppose that =21 < x < 2"~
First bit as the sign, n — 1 bits for the value

9=64+32+2+1
18=16+2

Forn=8:
99: 0110 0011
-18: 1001 0010

Any problems with this representation?



Two’s Complement Representation

n bit signhed integers, first bit will still be the sign bit

Suppose that 0 < x < 2™

x Is represented by the binary representatlon of x
Suppose that 0 < x < 2™

—Xx IS represented by the binary representaﬂon of 2" —

Key property: Twos complement representation of any number y
IS equivalent to y mod 2" so arithmetic works mod 2"

99=64+32+2+1
18=16+2

Forn =8:
99: 01100011
-18: 1110 1110



Sign-Magnitude vs. Two’'s Complement

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

11117 1110 1101 1100 1011 1010 1001 OOOO 0001 0010 0OO11 0100 0101 0110 0111

Sign-bit

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

1000 1001 1010 1011 1100 1101 1110 1111 OOOO O0OOO1 o0O10 0011 0100 0101 0110 oO111

Two’s complement



Two’s Complement Representation

e For 90 <« x <2n-1, —x isrepresented by the
binary representation of 2™ — x

— That is, the two’s complement representation of
any number y has the same value as y modulo 2",

* To compute this: Flip the bits of x then add 1:
— All 1’s string is 2™ — 1, so
Flip the bits of x =replace x by 2" — 1 — x
Then add 1 to get 2" — x



Basic Applications of mod

* Hashing
* Pseudo random number generation
* Simple cipher



Hashing

Scenario:

Map a small number of data values from a large
domain {0, 1, ..., M — 1} ...

...into a small set of locations {0,1, ...,n — 1} so
ohe can quickly check if some value is present

* hash(x) = x mod p for p a prime close to n
—or hash(x) = (ax + b) mod p

 Depends on all of the bits of the data
— helps avoid collisions due to similar values
— need to manage them if they occur



Pseudo-Random Number Generation

Linear Congruential method

Xn+1 = (@ x, + c) modm

Choose random x,, a, ¢, m and produce
a long sequence of x,,’s



Simple Ciphers

« Caesarcipher, A=1,B=2,...
— HELLO WORLD

* Shift cipher
—f(p) = (p + k) mod 26
— f1(p) = (p — k) mod 26
* More general
— f(p) = (ap + b) mod 26



