CSE 311: Foundations of Computing

Lecture 10: Set Operations & Representation, Modular Arithmetic

• A and B are equal if they have the same elements

$$A = B \equiv \forall x (x \in A \leftrightarrow x \in B)$$

• A is a subset of B if every element of A is also in B

$$\mathsf{A} \subseteq \mathsf{B} \equiv \forall x \ (x \in \mathsf{A} \rightarrow x \in \mathsf{B})$$

• Note:
$$(A = B) \equiv (A \subseteq B) \land (B \subseteq A)$$

Set OperationsA
$$\cup B = \{x : (x \in A) \lor (x \in B)\}$$
Union Ans $A \cup B = \{x : (x \in A) \land (x \in B)\}$ Union Ans $A \cap B = \{x : (x \in A) \land (x \in B)\}$ Intersection $A \setminus B = \{x : (x \in A) \land (x \notin B)\}$ Set Difference B $A \setminus B = \{x : (x \in A) \land (x \notin B)\}$ Set Difference B $A \setminus B = \{x : (x \in A) \land (x \notin B)\}$ Set Difference B $A \setminus B = \{x : (x \in A) \land (x \notin B)\}$ Set Difference B $A \setminus B = \{x : (x \in A) \land (x \notin B)\}$ Set Difference B $A \setminus B = \{x : (x \in A) \land (x \notin B)\}$ Set Difference B $A \setminus B = \{x : (x \in A) \land (x \notin B)\}$ Set Difference B $A \setminus B = \{x : (x \in A) \land (x \notin B)\}$ Set Difference B $A \setminus B = \{x : (x \in A) \land (x \notin B)\}$ Set Difference B $A \setminus B = \{x : (x \in A) \land (x \notin B)\}$ Set Difference B $A \setminus B = \{x : (x \in A) \land (x \notin B)\}$ Set Difference B $A \setminus B = \{x : (x \in A) \land (x \notin B)\}$ Set Difference B $A \setminus B = \{x : (x \in A) \land (x \notin B)\}$ Set Difference B $A \setminus B = \{x : (x \in A) \land (x \notin B)\}$ Set Difference B $A \setminus B = \{x : (x \in A) \land (x \notin B)\}$ Set Difference B $A \setminus B = \{x : (x \in A) \land (x \notin B)\}$ Set Difference B $A \setminus B = \{x : (x \in A) \land (x \notin B)\}$ Set Difference B $A \setminus B = \{x : (x \in A) \land (x \notin B)\}$ Set Difference B $A \setminus B = \{x : (x \in A) \land (x \notin B)\}$ Set Difference B $A \setminus B = \{x : (x \in A) \land (x \notin B)\}$ Set Difference B $A \setminus B = \{x : (x \in A) \land (x \notin B)\}$ Set Difference B $A \setminus B = \{x : (x \in A) \land (x \notin B)\}$ Set Difference B $A \cap B = \{x : (x \in A) \land (x \notin B)\}$ Set Difference B $A \cap B = \{x : (x \in A) \land (x \notin B)\}$ Set Di

$$A \bigoplus B = \{ x : (x \in A) \bigoplus (x \in B) \}$$
Symmetric
Difference
$$\overline{A} = \{ x : x \notin A \} = \{ x : \neg (x \in A) \}$$
(with respect to universe U)
$$A = \{1, 2, 3\}$$
B = {1, 2, 4, 6}
Universe:
U = {1, 2, 3, 4, 5, 6}
$$A \bigoplus B = \{3, 4, 6\}$$
$$\overline{A} = \{4, 5, 6\}$$

- Definition for U based on V

$$A \cup B = \{ x : (x \in A) \lor (x \in B) \}$$

• Definition for \cap based on \wedge

$$A \cap B = \{ x : (x \in A) \land (x \in B) \}$$

- Complement works like \neg

$$\overline{A} = \{ x : \neg (x \in A) \}$$

De Morgan's Laws

$$\overline{A \cup B} = \overline{A} \cap \overline{B} \quad \text{Infinal.}$$

$$\begin{cases} "x : \neg (x \in A \cup B) \} = \{ x : \neg (x \in A \cup x \in B) \} \\ = \{ x : \neg (x \in A) \land \neg (x \in B) \} \\ = \{ x : \neg (x \in A) \land \neg (x \in B) \} \\ = \{ x : x \in \overline{A} \land x \in \overline{B} \} = \overline{A} \cap \overline{B} \end{cases}$$

$$\text{It is may } \neg (x \in A \cup B) \quad \text{Thefore } \neg (x \in A \lor x \in B) \text{ is dance.}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B} \quad \text{By demorgon's } x \notin A \text{ and } x \notin B.$$

$$\text{This implies that } x \in \overline{A} \cap \overline{B}.$$

$$\text{Since } x \text{ was arbitry } \overline{A \cup B} = \overline{A} \cap \overline{B}.$$

Proof technique: To show C = D show $x \in C \rightarrow x \in D$ and $x \in D \rightarrow x \in C$

~

Prove that for any sets A and B we have $(A \cap B) \subseteq A$

Remember the definition of subset? $X \subseteq Y \equiv \forall x \ (x \in X \rightarrow x \in Y)$

Prove that for any sets A and B we have $(A \cap B) \subseteq A$

Remember the definition of subset? $X \subseteq Y \equiv \forall x \ (x \in X \rightarrow x \in Y)$

Proof: Let *A* and *B* be arbitrary sets and *x* be an arbitrary element of $A \cap B$. Then, by definition of $A \cap B$, $x \in A$ and $x \in B$. It follows that $x \in A$, as required. Power Set of a set A = set of all subsets of A

$$\mathcal{P}(A) = \{ B : B \subseteq A \}$$

 e.g., let Days={M,W,F} and consider all the possible sets of days in a week you could ask a question in class

$$\mathcal{P}(\text{Days}) = \{ \{M\}, \emptyset, \{W\}, \{F\}, \{M, W\}, \{M, W, F\}, \{M, F\}, \{M, F\}, \{W, F\} \}, \{W, F\} \}.$$

$$\mathcal{P}(\emptyset) = \{\emptyset\} \}$$

Power Set of a set A = set of all subsets of A

$$\mathcal{P}(A) = \{ B : B \subseteq A \}$$

$$if A \quad hes \quad n \quad \mathcal{P}(A) \quad has \quad 2^{n}$$

 e.g., let Days={M,W,F} and consider all the possible sets of days in a week you could ask a question in class

 $\mathcal{P}(\mathsf{Days}) = \{\{\mathsf{M},\mathsf{W},\mathsf{F}\},\{\mathsf{M},\mathsf{W}\},\{\mathsf{M},\mathsf{F}\},\{\mathsf{W},\mathsf{F}\},\{\mathsf{M}\},\{\mathsf{W}\},\{\mathsf{F}\},\varnothing\}\}$ $\mathcal{P}(\emptyset) = \{\emptyset\} \neq \emptyset$ $\mathcal{P}(\{\emptyset\})$

$$A \times B = \{ (a, b) : a \in A, b \in B \}$$

 $\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.

 $A \times \emptyset = \{(a, b) : a \in A \land b \in \emptyset\} = \{(a, b) : a \in A \land F\} = \emptyset$

Representing Sets Using Bits

- Suppose universe U is $\{1, 2, ..., n\}$
- Can represent set $B \subseteq U$ as a vector of bits: $b_1 b_2 \dots b_n$ where $b_i = 1$ when $i \in B$ $b_i = 0$ when $i \notin B$
 - Called the *characteristic vector* of set B
- Given characteristic vectors for A and B– What is characteristic vector for $A \cup B$? $A \cap B$?

3

- ls -1
 - drwxr-xr-x ... Documents/
 -rw-r--r-- ... file1

- Permissions maintained as bit vectors
 - Letter means bit is 1
 - "–" means bit is 0.

 $\begin{array}{r} 01101101 \\ \searrow 00110111 \\ 01111111 \end{array}$

00101010 <u>
00001111</u>
00001010

 $\begin{array}{r} 01101101 \\ \oplus 00110111 \\ \hline 01011010 \end{array}$

Java:	z=x y
Java:	z=x&y
Java:	z=x^y

• If x and y are bits: $(x \oplus y) \oplus y = ? \times$

• What if x and y are bit-vectors? ×

- Alice wants to communicate message secretly to Bob so that eavesdropper Eve who hears their conversation cannot tell what Alice's message is.
- Alice and Bob can get together and privately share a secret key K ahead of time.

- Alice and Bob privately share random n-bit vector K
 - Eve does not know K
- Later, Alice has n-bit message m to send to Bob
 - Alice computes $C = m \oplus K$
 - Alice sends C to Bob
 - Bob computes $m = C \oplus K$ which is $(m \oplus K) \oplus K$
- Eve cannot figure out m from C unless she can guess K

$$S = \{ x : x \notin x \}$$

Suppose that $S \in S$...

$$S = \{ x : x \notin x \}$$

Suppose that $S \in S$. Then, by definition of $S, S \notin S$, but that's a contradiction.

Suppose that $S \notin S$. Then, by definition of the set $S, S \in S$, but that's a contradiction, too.

This is reminiscent of the truth value of the statement "This statement is false."

Number Theory (and applications to computing)

- Branch of Mathematics with direct relevance to computing
- Many significant applications
 - Cryptography
 - Hashing
 - Security
- Important tool set

- Arithmetic over a finite domain
- In computing, almost all computations are over a finite domain

I'm ALIVE!

I'm ALIVE!

```
public class Test {
   final static int SEC IN YEAR = 364*24*60*60*100;
   public static void main(String args[]) {
       System.out.println(
          "I will be alive for at least " +
          SEC IN YEAR * 101 + " seconds."
      );
         ----jGRASP exec: java Test
        I will be alive for at least -186619904 seconds.
         ----jGRASP: operation complete.
```

Divisibility

Definition: "a divides b" For $a \in \mathbb{Z}, b \in \mathbb{Z}$ with $a \neq 0$: $a \mid b \leftrightarrow \exists k \in \mathbb{Z} \ (b = ka)$

Check Your Understanding. Which of the following are true?

$$5 | 1
1 = 5 \cdot k
1 | 5
5 = 2.5 \cdot k
5 | 25
5 = 2.5 \cdot k
5 | 25
5 = 0 | 5
5 = 0 | 5
5 = 0 | 5
5 = 0 | 5
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5 = 0 | c
5$$

Divisibility

Definition: "a divides b"

For
$$a \in \mathbb{Z}$$
, $b \in \mathbb{Z}$ with $a \neq 0$:
 $a \mid b \leftrightarrow \exists k \in \mathbb{Z} \ (b = ka)$

Check Your Understanding. Which of the following are true?

To put it another way, if we divide *d* into *a*, we get a unique quotient $q = a \operatorname{div} d$ and non-negative remainder $r = a \operatorname{mod} d$

$$a = -13 \quad d = 4$$

$$q = -4 \quad r = 3$$

$$-13 = (-3) + -1$$

$$-13 = (-4) - 4 + 3$$

Note: $r \ge 0$ even if a < 0. Not quite the same as a%d.

Division Theorem

For $a \in \mathbb{Z}$, $d \in \mathbb{Z}$ with d > 0there exist *unique* integers q, r with $0 \le r < d$ such that a = dq + r.

To put it another way, if we divide *d* into *a*, we get a unique quotient $q = a \operatorname{div} d$ and non-negative remainder $r = a \operatorname{mod} d$

```
public class Test2 {
    public static void main(String args[]) {
        int a = -5;
        int d = 2;
        System.out.println(a % d);
    }
    Note: r ≥ 0 even if a < 0.
    Not quite the same as a%d.</pre>
```

Arithmetic, mod 7

 $a +_7 b = (a + b) \mod 7$ $a \times_7 b = (a \times b) \mod 7$

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

х	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5		4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Definition: "a is congruent to b modulo m"

For $a, b, m \in \mathbb{Z}$ with m > 0 $a \equiv b \pmod{m} \leftrightarrow m \mid (a - b)$

Check Your Understanding. What do each of these mean? When are they true?

 $x \equiv 0 \pmod{2}$

 $-1 \equiv 19 \pmod{5}$

 $y \equiv 2 \pmod{7}$

Definition: "a is congruent to b modulo m"

For $a, b, m \in \mathbb{Z}$ with m > 0 $a \equiv b \pmod{m} \leftrightarrow m \mid (a - b)$

Check Your Understanding. What do each of these mean? When are they true?

 $x \equiv 0 \pmod{2}$

This statement is the same as saying "x is even"; so, any x that is even (including negative even numbers) will work.

 $-1 \equiv 19 \pmod{5}$

This statement is true. 19 - (-1) = 20 which is divisible by 5

 $y \equiv 2 \pmod{7}$

This statement is true for y in { ..., -12, -5, 2, 9, 16, ...}. In other words, all y of the form 2+7k for k an integer.

Modular Arithmetic: A Property

Let a, b, m be integers with m > 0. Then, $a \equiv b \pmod{m}$ if and only if $a \mod m = b \mod m$.

Suppose that $a \equiv b \pmod{m}$.

Suppose that $a \mod m = b \mod m$.

Modular Arithmetic: A Property

Let a, b, m be integers with m > 0. Then, $a \equiv b \pmod{m}$ if and only if $a \mod m = b \mod m$.

Suppose that $a \equiv b \pmod{m}$.

Then, $m \mid (a - b)$ by definition of congruence.

So, a - b = km for some integer k by definition of divides. Therefore, a = b + km.

Taking both sides modulo m we get:

 $a \mod m = (b + km) \mod m = b \mod m$.

Suppose that $a \mod m = b \mod m$.

By the division theorem, $a = mq + (a \mod m)$ and

 $b = ms + (b \mod m)$ for some integers q,s.

Then, $a - b = (mq + (a \mod m)) - (ms + (b \mod m))$ = $m(q - s) + (a \mod m - b \mod m)$ = m(q - s) since $a \mod m = b \mod m$

Therefore, $m \mid (a - b)$ and so $a \equiv b \pmod{m}$.