CSE 311: Foundations of Computing

Lecture 10: Set Operations & Representation, Modular Arithmetic

Let a be and Ax Un, Plx, 4) Ay P(a, Y) P(a, b) P(a, k)



• A and B are equal if they have the same elements

$$A = B \equiv \forall x (x \in A \leftrightarrow x \in B)$$

• A is a subset of B if every element of A is also in B

$$A \subseteq B \equiv \forall x (x \in A \rightarrow x \in B)$$

X

• Note:
$$(A = B) \equiv (A \subseteq B) \land (B \subseteq A)$$

$$A \cup B = \{ x : (x \in A) \lor (x \in B) \}$$
 Union

$$A \cap B = \{ x : (x \in A) \land (x \in B) \}$$
 Intersection

$$A \setminus B = \{ x : (x \in A) \land (x \notin B) \}$$
 Set Difference

A =
$$\{1, 2, 3\}$$

B = $\{3, 5, 6\}$
C = $\{3, 4\}$
Using A, B, C and set operations, make...
[6] = A U B U C
 $\{3\} = A \cap B = A \cap C$
 $\{1, 2\} = A \setminus B = A \setminus C$

$$A \bigoplus B = \{ x : (x \in A) \bigoplus (x \in B) \}$$
 Symmetric

$$\overline{A} = \{ x : x \notin A \} = \{ x : \neg (x \in A) \}$$
(with respect to universe U)

Complement

Difference

A =
$$\{1, 2, 3\}$$

B = $\{1, 2, 4, 6\}$
Universe:
U = $\{1, 2, 3, 4, 5, 6\}$

 $A \bigoplus B = \{3, 4, 6\}$ $\overline{A} = \{4, 5, 6\}$

It's Boolean algebra again

- Definition for U based on V

$$A \cup B = \{ x : (x \in A) \lor (x \in B) \}$$

• Definition for \cap based on \wedge

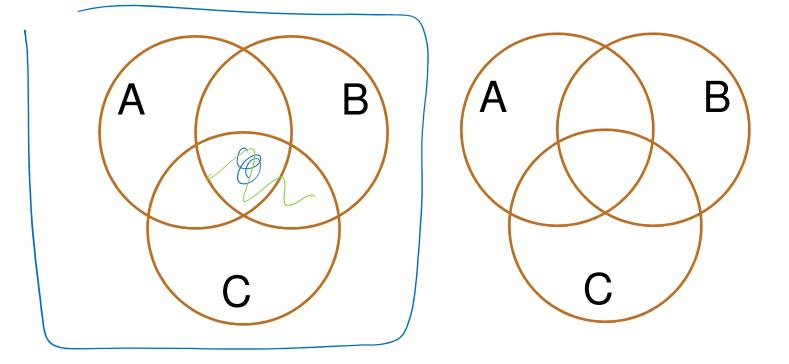
$$A \cap B = \{ x : (x \in A) \land (x \in B) \}$$

- Complement works like \neg

$$\overline{A} = \{ x : \neg (x \in A) \}$$

AUDSAND $\overline{A \cup B} = \overline{A} \cap \overline{B}$ Let XEAUB. Thur for XEAUB in (XEA) and n(XEB) in YEA and XEB in XEA and XEB in XEAND, $\overline{A \cap B} = \overline{A} \cup \overline{B}$ Let XEAND. \mathbf{N} Proof technique: To show C = D show $x \in C \rightarrow x \in D$ and $x \in D \rightarrow x \in C$

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$



A Simple Set Proof

Prove that for any sets A and B we have $(A \cap B) \subseteq A$

Remember the definition of subset?

 $X \subseteq Y \equiv \forall x \ (x \in X \to x \in Y)$

Proof. Let A and & be arbitrary sets slet & be an arbitrary element of ANB slet & be an arbitrary element of ANB if EA and YEB by def= of MEA and YEB by def= of MOB

- . X+A. Same y was artitly - . ANBEA (Judn H)

A Simple Set Proof

Prove that for any sets A and B we have $(A \cap B) \subseteq A$

Remember the definition of subset? $X \subseteq Y \equiv \forall x \ (x \in X \rightarrow x \in Y)$

Proof: Let *A* and *B* be arbitrary sets and *x* be an arbitrary element of $A \cap B$. Then, by definition of $A \cap B$, $x \in A$ and $x \in B$. It follows that $x \in A$, as required. Power Set of a set A = set of all subsets of A

$$\mathcal{P}(A) = \{ B : B \subseteq A \}$$

 e.g., let Days={M,W,F} and consider all the possible sets of days in a week you could ask a question in class

$$\mathcal{P}(\text{Days})=? \left\{ \{M, W, F\}, \{M, w\}, \{M, F\}, \{W, F\}, \{M\}, \{W\}, F\} \right\}$$

$$\mathcal{P}(\emptyset)=? \left\{ \emptyset \right\} \qquad \text{If } t_{mn}$$

$$n \ elt_{1} \ n \ S$$

$$How many \ n \ P(S) \ ? \ Z^{h}$$

Power Set of a set A = set of all subsets of A

$$\mathcal{P}(A) = \{ B : B \subseteq A \}$$

 e.g., let Days={M,W,F} and consider all the possible sets of days in a week you could ask a question in class

 $\mathcal{P}(Days) = \{ \{M, W, F\}, \{M, W\}, \{M, F\}, \{W, F\}, \{M\}, \{W\}, \{F\}, \emptyset \} \}$

 $\mathcal{P}(\emptyset) = \{\emptyset\} \neq \emptyset$

$$A \times B = \{ (a, b) : a \in A, b \in B \}$$

 $\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.

$$\mathbb{Z} \times \mathbb{Z} \text{ is "the set of all pairs of integers"} \xrightarrow{A \times b} \xrightarrow{har} \dots \xrightarrow{e} \underbrace{har} e \underbrace{har$$

Russell's Paradox

$$S = \{ x : x \notin x \}$$

Suppose for contradiction that $S \in S$...

Russell's Paradox

$$S = \{x : x \notin x\}$$

Suppose for contradiction that $S \in S$. Then, by definition of $S, S \notin S$, but that's a contradiction.

Suppose for contradiction that $S \notin S$. Then, by definition of the set $S, S \in S$, but that's a contradiction, too.

This is reminiscent of the truth value of the statement "This statement is false."

Logicomix

Graphic Asvelikati

- Suppose universe U is $\{1, 2, ..., n\}$
- Can represent set $B \subseteq U$ as a vector of bits:

 $b_1b_2 \dots b_n$ where $b_i = 1$ when $i \in B$ $b_i = 0$ when $i \notin B$

- Called the characteristic vector of set B

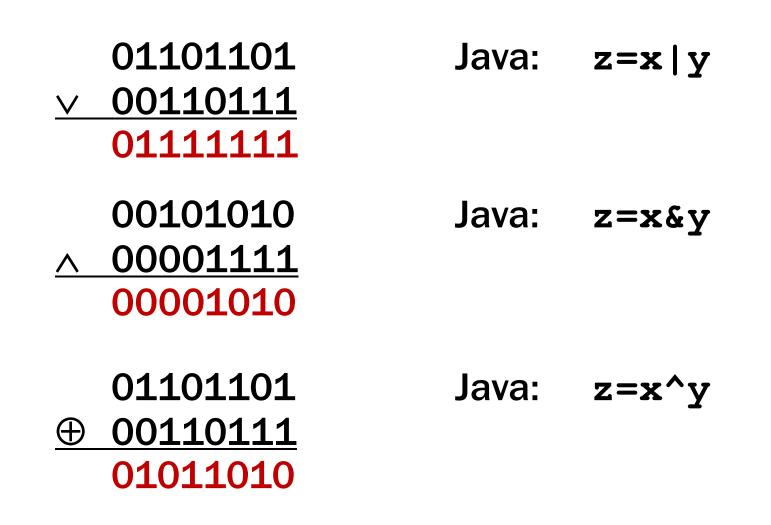
• Given characteristic vectors for A and B

– What is characteristic vector for $A \cup B$? $A \cap B$?

• ls -1

drwxr-xr-x ... Documents/
-rw-r--r-- ... file1

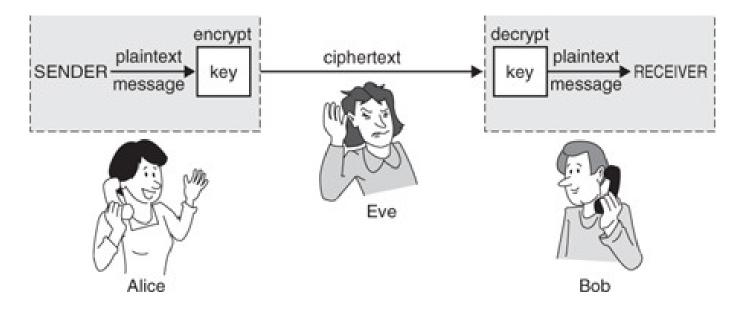
- Permissions maintained as bit vectors
 - Letter means bit is 1
 - "–" means bit is 0.



- If x and y are bits: $(x \oplus y) \oplus y = ?$
- What if x and y are bit-vectors?

 $(\times \oplus \gamma) \oplus \gamma = \chi$ $\times \oplus (\gamma \oplus \gamma)$

- Alice wants to communicate message secretly to Bob so that eavesdropper Eve who hears their conversation cannot tell what Alice's message is.
- Alice and Bob can get together and privately share a secret key K ahead of time.



- Alice and Bob privately share random n-bit vector K
 - Eve does not know K
- Later, Alice has n-bit message m to send to Bob
 - Alice computes $C = m \oplus K$
 - Alice sends C to Bob
 - Bob computes m = C \oplus K which is (m \oplus K) \oplus K = M
- Eve cannot figure out m from C unless she can guess K

Number Theory (and applications to computing)

- Branch of Mathematics with direct relevance to computing
- Many significant applications
 - Cryptography
 - Hashing
 - Security
- Important tool set

- Arithmetic over a finite domain
- In computing, almost all computations are over a finite domain

I'm ALIVE!

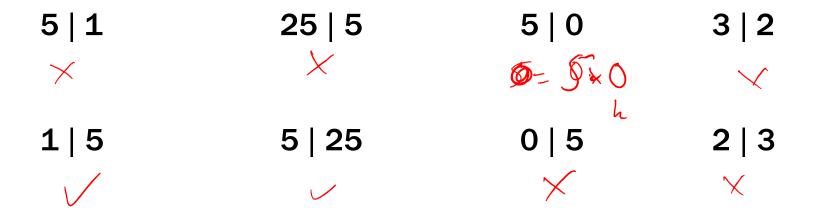
```
public class Test {
   final static int SEC_IN_YEAR = 364*24*60*60*100;
   public static void main(String args[]) {
       System.out.println(
          "I will be alive for at least " +
          SEC_IN_YEAR * 101 + " seconds."
       );
   }
}
          ----jGRASP exec: java Test
         I will be alive for at least -186619904 seconds.
          ----jGRASP: operation complete.
```

Divisibility

Definition: "a divides b"

For $a \in \mathbb{Z}, b \in \mathbb{Z}$ with $a \neq 0$: $a \mid b \leftrightarrow \exists k \in \mathbb{Z} \ (b = ka)$

Check Your Understanding. Which of the following are true?

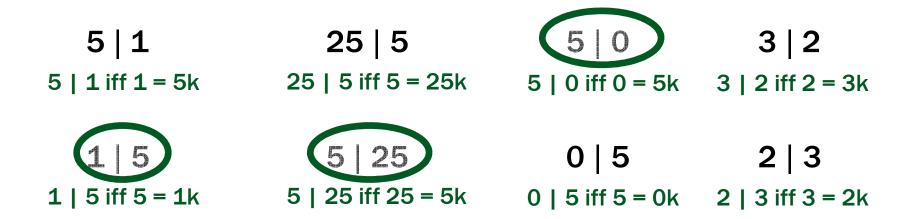


Divisibility

Definition: "a divides b"

For $a \in \mathbb{Z}, b \in \mathbb{Z}$ with $a \neq 0$: $a \mid b \leftrightarrow \exists k \in \mathbb{Z} \ (b = ka)$

Check Your Understanding. Which of the following are true?



Division Theorem

Division Theorem

For $a \in \mathbb{Z}$, $d \in \mathbb{Z}$ with d > 0there exist *unique* integers q, r with $0 \le r < d$ such that a = dq + r.

To put it another way, if we divide d into a, we get a unique quotient $q = a \operatorname{div} d$ and non-negative remainder $r = a \operatorname{mod} d$ $a = d(a \operatorname{div} d) + a \operatorname{mod} d$

> Note: r ≥ 0 even if a < 0. Not quite the same as **a**%**d**.

Division Theorem

Division Theorem

For $a \in \mathbb{Z}$, $d \in \mathbb{Z}$ with d > 0there exist *unique* integers q, r with $0 \le r < d$ such that a = dq + r.

To put it another way, if we divide d into a, we get a unique quotient $q = a \operatorname{div} d$ and non-negative remainder $r = a \operatorname{mod} d$

```
public class Test2 {
    public static void main(String args[]) {
        int a = -5;
        int d = 2;
        System.out.println(a % d);
    }
    Note: r ≥ 0 even if a < 0.
    Not quite the same as a%d.</pre>
```

$a +_7 b = (a + b) \mod 7$ $a \times_7 b = (a \times b) \mod 7$

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

х	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Modular Arithmetic

Definition: "a is congruent to b modulo m"

For $a, b, m \in \mathbb{Z}$ with m > 0 $a \equiv b \pmod{m} \leftrightarrow m \mid (a - b)$

Check Your Understanding. What do each of these mean? When are they true?

 $x \equiv 0 \pmod{2}$

 $-1 \equiv 19 \pmod{5}$

 $y \equiv 2 \pmod{7}$

Definition: "a is congruent to b modulo m"

For $a, b, m \in \mathbb{Z}$ with m > 0

 $a \equiv b \pmod{m} \leftrightarrow m \mid (a - b)$

Check Your Understanding. What do each of these mean? When are they true?

 $x \equiv 0 \pmod{2}$

This statement is the same as saying "x is even"; so, any x that is even (including negative even numbers) will work.

 $-1 \equiv 19 \pmod{5}$

This statement is true. 19 - (-1) = 20 which is divisible by 5

 $y \equiv 2 \pmod{7}$

This statement is true for y in $\{ ..., -12, -5, 2, 9, 16, ... \}$. In other words, all y of the form 2+7k for k an integer.

Modular Arithmetic: A Property

Let a, b, m be integers with m > 0. Then, $a \equiv b \pmod{m}$ if and only if $a \mod m = b \mod m$.

Suppose that $a \equiv b \pmod{m}$.

Suppose that $a \mod m = b \mod m$.

Modular Arithmetic: A Property

Let a, b, m be integers with m > 0. Then, $a \equiv b \pmod{m}$ if and only if $a \mod m = b \mod m$.

Suppose that $a \equiv b \pmod{m}$.

Then, $m \mid (a - b)$ by definition of congruence.

So, a - b = km for some integer k by definition of divides.

Therefore, a = b + km.

Taking both sides modulo *m* we get:

 $a \mod m = (b + km) \mod m = b \mod m$.

Suppose that $a \mod m = b \mod m$.

By the division theorem, $a = mq + (a \mod m)$ and

 $b = ms + (b \mod m)$ for some integers q,s.

Then, $a - b = (mq + (a \mod m)) - (ms + (b \mod m))$

 $= m(q-s) + (a \mod m - b \mod m)$

= m(q - s) since $a \mod m = b \mod m$

Therefore, $m \mid (a - b)$ and so $a \equiv b \pmod{m}$.