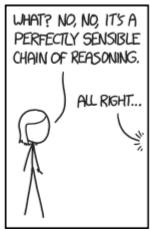
CSE 311: Foundations of Computing

Lecture 9: English Proofs, Strategies, Set Theory

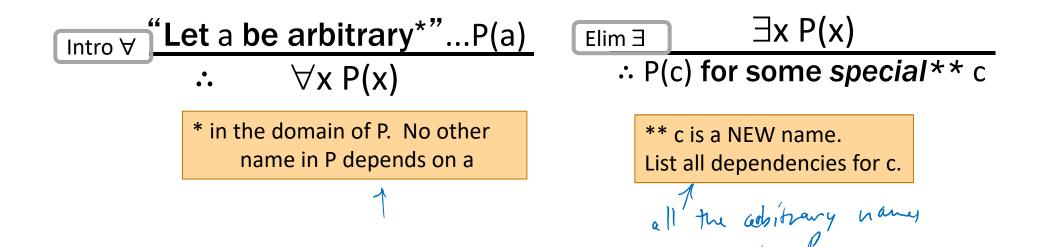




Last class: Inference Rules for Quantifiers

P(c) for some c

$$\exists x P(x)$$
 $\exists x P(x)$
 $\Rightarrow P(a) \text{ for any a}$



Last class: Even and Odd

Even(x) $\equiv \exists y \ (x=2y)$ Odd(x) $\equiv \exists y \ (x=2y+1)$ Domain: Integers

Prove: "The square of every even number is even."

Formal proof of: $\forall x \text{ (Even}(x) \rightarrow \text{Even}(x^2))$

1. Let a be an arbitrary integer

2.1	Even(a)	Assumption
- :-	LVCII(U)	Assumption

2.2
$$\exists y (a = 2y)$$
 Definition of Even

2.3
$$a = 2b$$
 Elim \exists : b special depends on a

2.4
$$a^2 = 4b^2 = 2(2b^2)$$
 Algebra

2.5
$$\exists y (a^2 = 2y)$$
 Intro \exists rule

2. Even(a)
$$\rightarrow$$
Even(a²) Direct proof rule

3.
$$\forall x (Even(x) \rightarrow Even(x^2))$$
 Intro $\forall : 1,2$

English Proof: Even and Odd

Even(x) $\equiv \exists y (x=2y)$ $Odd(x) \equiv \exists y (x=2y+1)$ Domain: Integers

Prove "The square of every even integer is even."

Proof: Let a be an arbitrary 1. Let a be an arbitrary integer

even integer. & assum tot 2.1 Even(a)

Assumption

Then, by definition, a = 2bfor some integer **b** (depending on a).

2.2 $\exists y (a = 2y)$ Definition

2.3 a = 2b**b** special depends on **a**

Squaring both sides, we get $2.4 \text{ a}^2 = 4b^2 = 2(2b^2)$ Algebra $a^2 = 4b^2 = 2(2b^2)$.

Since 2b² is an integer, by definition, a² is even.

2.5 $\exists y (a^2 = 2y)$ 2.6 Even(a²) Definition

Since a was arbitrary, it follows that the square of every even number is even. 2. Even(a) \rightarrow Even(a²)

3. $\forall x \text{ (Even(x)} \rightarrow \text{Even(x}^2\text{))}$

Even and Odd

Predicate Definitions

Even(x)
$$\equiv \exists y \ (x = 2y)$$

Odd(x) $\equiv \exists y \ (x = 2y + 1)$

Domain of Discourse

Integers

Prove "The square of every odd integer is odd."

Proof: Lot a be un arbitrary enteger That is odd. Therefore a= 25.41 for some literen 6 (depending on a) : a2 - (2h+1)2 - 452 + 45+1 = 2 (262+25) +1 i. Since 2152+26 is an integer 92 is odd. Since a war arbitrain, the I quare of every odd entegen is odd F

Even and Odd

Predicate Definitions

Even(x)
$$\equiv \exists y \ (x = 2y)$$

Odd(x) $\equiv \exists y \ (x = 2y + 1)$

Domain of Discourse Integers

Prove "The square of every odd integer is odd."

Proof: Let b be an arbitrary odd integer.

Then, b = 2c+1 for some integer c (depending on b).

Therefore, $b^2 = (2c+1)^2 = 4c^2 + 4c + 1 = 2(2c^2 + 2c) + 1$.

Since $2c^2+2c$ is an integer, b^2 is odd. Since b was arbitrary, the square of every odd integer is odd.

Proof Strategies: Counterexamples

To disprove $\forall x P(x)$ prove $\exists \neg P(x)$:

- Works by de Morgan's Law: $\neg \forall x P(x) \equiv \exists x \neg P(x)$
- All we need to do that is find an x for which P(x) is false
- This example is called a counterexample to $\forall x P(x)$.

e.g. Disprove "Every prime number is odd"

Since 7 is pomer beat odd

(Prihe (2) > Odd(2))

1 Wx (Prihe (4) > Odd(x))

Proof Strategies: Proof by Contrapositive

If we assume $\neg q$ and derive $\neg p$, then we have proven $\neg q \rightarrow \neg p$, which is equivalent to proving $p \rightarrow q$.

1.1.
$$\neg q$$
 Assumption

1. $\neg q \rightarrow \neg p$ Direct Proof Rule 2. $p \rightarrow q$ Contrapositive: 1

Proof by Contradiction: One way to prove p

If we assume p and derive F (a contradiction), then we have proven $\neg p$.

$$1.1.(p)$$
 Assumption

1.3. F

1. $p \rightarrow F$ Direct Proof rule

2. $\neg p \lor F$ Law of Implication: 1

3. $\neg p$ Identity: 2

eg. to prove $p \rightarrow g$ Assum $7(p \rightarrow g) \equiv 7png$ and derive false

Even and Odd

Predicate Definitions

Even(x)
$$\equiv \exists y \ (x = 2y)$$

Odd(x) $\equiv \exists y \ (x = 2y + 1)$

Domain of Discourse Integers

Prove: "No integer is both even and odd."

English proof: $\neg \exists x (Even(x) \land Odd(x))$

 $\equiv \forall x \neg (Even(x) \land Odd(x))$

Proof

Let a be an arbitrary theyer.

We prove by contradiction

Suppose that this both even and odd a

i. a = 2b for some integer to depending on a.

i. a = 2b for some integer to depending on a.

and a = 2c+1 for integer to depending on a.

i. 2b = 2c+1 for integer to depending on a.

i. 2b = 2c+1 for integer to depending on a.

i. 2b = 2c+1 for integer to depending on a.

i. 2b = 2c+1 for integer to depending on a.

i. 2b = 2c+1 for integer to depending on a.

ii. 2b = 2c+1 for integer to depending on a.

ii. 2b = 2c+1 for integer to depending on a.

iii. 2b = 2c+1 for integer to depending on a.

iii. 2b = 2c+1 for integer to depending on a.

iii. 2b = 2c+1 for integer to depending on a.

iii. 2b = 2c+1 for integer to depending on a.

iii. 2b = 2c+1 for integer to depending on a.

iii. 2b = 2c+1 for integer to depending on a.

iii. 2b = 2c+1 for integer to depending on a.

iii. 2b = 2c+1 for integer to depending on a.

iii. 2b = 2c+1 for integer to depending on a.

iii. 2b = 2c+1 for integer to depending on a.

iii. 2c = 2c+1 for integer to depending on a.

iii. 2c = 2c+1 for integer to depending on a.

iii. 2c = 2c+1 for integer to depending on a.

iii. 2c = 2c+1 for integer to depending on a.

iii. 2c = 2c+1 for integer to depending on a.

iii. 2c = 2c+1 for integer to depending on a.

iii. 2c = 2c+1 for integer to depending on a.

iii. 2c = 2c+1 for integer to depending on a.

iii. 2c = 2c+1 for integer to depending on a.

iii. 2c = 2c+1 for integer to depending on a.

iii. 2c = 2c+1 for integer to depending on a.

iii. 2c = 2c+1 for integer to depending on a.

iii. 2c = 2c+1 for integer to depending on a.

iii. 2c = 2c+1 for integer to depending on a.

iii. 2c = 2c+1 for integer to depending on a.

iii. 2c = 2c+1 for integer to depending on a.

iii. 2c = 2c+1 for integer to depending on a.

iii. 2c = 2c+1 for integer to depending on a.

iii. 2c = 2c+1 for integer to depending on a.

iii. 2c = 2c+1 for integer to depending on a.

iii. 2c = 2c+1 for integer to depending on a.

iii. 2c = 2c+1 for integer to depend

Even and Odd

Predicate Definitions

Even(x)
$$\equiv \exists y \ (x = 2y)$$

Odd(x) $\equiv \exists y \ (x = 2y + 1)$

Domain of Discourse
Integers

Prove: "No integer is both even and odd."

English proof: $\neg \exists x (Even(x) \land Odd(x))$

 $\equiv \forall x \neg (Even(x) \land Odd(x))$

Proof: We work by contradiction. Let x be an arbitrary integer and suppose that it is both even and odd. Then x=2a for some integer a and x=2b+1 for some integer b. Therefore 2a=2b+1 and hence $a=b+\frac{1}{2}$.

But two integers cannot differ by ½ so this is a contradiction. So, no integer is both even and odd. ■

Rational Numbers

 A real number x is rational iff there exist integers p and q with q≠0 such that x=p/q.

Rational(x) $\equiv \exists p \exists q ((x=p/q) \land Integer(p) \land Integer(q) \land q \neq 0)$

Rationality

Domain of Discourse
Real Numbers

Predicate Definitions

Rational(x) $\equiv \exists p \; \exists q \; ((x = p/q) \land Integer(p) \land Integer(q) \land (q \neq 0))$

Prove: "If x and y are rational then xy is rational."

Rationality

Domain of Discourse
Real Numbers

Predicate Definitions

Rational(x) $\equiv \exists p \; \exists q \; ((x = p/q) \land Integer(p) \land Integer(q) \land (q \neq 0))$

Prove: "If x and y are rational then xy is rational."

Proof: Let x and y be rational numbers. Then, x = a/b for some integers a, b, where $b\neq 0$, and y = c/d for some integers c,d, where $d\neq 0$.

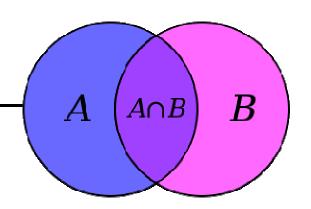
Multiplying, we get that xy = (ac)/(bd).

Since b and d are both non-zero, so is bd; furthermore, ac and bd are integers. It follows that xy is rational, by definition of rational.

Proofs

- Formal proofs follow simple well-defined rules and should be easy to check
 - In the same way that code should be easy to execute
- English proofs correspond to those rules but are designed to be easier for humans to read
 - Easily checkable in principle
- Simple proof strategies already do a lot
 - Later we will cover a specific strategy that applies to loops and recursion (mathematical induction)

Set Theory



Sets are collections of objects called elements.

Write $a \in B$ to say that a is an element of set B, and $a \notin B$ to say that it is not.

```
Some simple examples
A = \{1\}
B = \{1, 3, 2\}
C = \{\Box, 1\}
D = \{\{17\}, 17\}
E = \{1, 2, 7, cat, dog, \emptyset, \alpha\}
```

Some Common Sets

```
N is the set of Natural Numbers; \mathbb{N} = \{0, 1, 2, ...\}

\mathbb{Z} is the set of Integers; \mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}

\mathbb{Q} is the set of Rational Numbers; e.g. ½, -17, 32/48

\mathbb{R} is the set of Real Numbers; e.g. 1, -17, 32/48, \pi, \sqrt{2}

[n] is the set \{1, 2, ..., n\} when n is a natural number \{\} = \emptyset is the empty set; the only set with no elements
```

Sets can be elements of other sets

For example

A =
$$\{\{1\},\{2\},\{1,2\},\emptyset\}$$

B = $\{1,2\}$

Then $B \in A$.

Definitions

A and B are equal if they have the same elements

$$A = B \equiv \forall x (x \in A \leftrightarrow x \in B)$$

A is a subset of B if every element of A is also in B

$$A \subseteq B \equiv \forall x (x \in A \rightarrow x \in B)$$

• Note:
$$(A = B) \equiv (A \subseteq B) \land (B \subseteq A)$$

Definition: Equality

A and B are equal if they have the same elements

$$A = B \equiv \forall x (x \in A \leftrightarrow x \in B)$$

Which sets are equal to each other?

Definition: Subset

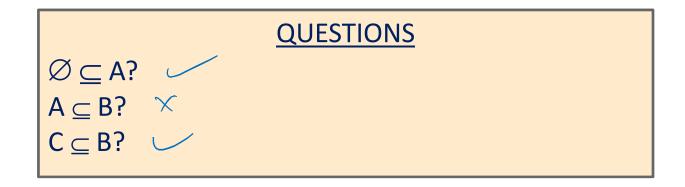
A is a subset of B if every element of A is also in B

$$A \subseteq B \equiv \forall x (x \in A \rightarrow x \in B)$$

$$A = \{1, 2, 3\}$$

$$B = \{3, 4, 5\}$$

$$C = \{3, 4\}$$



Building Sets from Predicates

S =the set of all* x for which P(x) is true

$$S = \{x : P(x)\}$$

S =the set of all x in A for which P(x) is true

$$S = \{x \in A : P(x)\}$$

*in the domain of P, usually called the "universe" U

Set Operations

$$A \cup B = \{ x : (x \in A) \lor (x \in B) \}$$
 Union

$$A \cap B = \{ x : (x \in A) \land (x \in B) \}$$
 Intersection

$$A \setminus B = \{ x : (x \in A) \land (x \notin B) \}$$
 Set Difference

$$A = \{1, 2, 3\}$$

 $B = \{3, 5, 6\}$
 $C = \{3, 4\}$

QUESTIONS

Using A, B, C and set operations, make...

[6] =
$$A \vee B \cup C$$

{3} = $B \wedge C = A \wedge B$
{1,2} = $A \wedge C = A \wedge B$

More Set Operations

$$A \oplus B = \{ x : (x \in A) \oplus (x \in B) \}$$

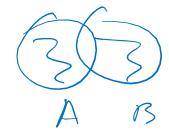
Symmetric Difference

$$\overline{A} = \{ x : x \notin A \} = \{ y \notin A \}$$
(with respect to universe U)

Complement

$$A \oplus B = \{3, 4, 6\}$$

 $\overline{A} = \{4,5,6\}$



It's Boolean algebra again

Definition for ∪ based on ∨

Complement works like ¬

De Morgan's Laws

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\uparrow \{ \chi : \gamma ((\chi \in A) \cup (\chi \in B)) \}$$

$$= \{ \chi : \gamma (\chi \in A) \land \gamma (\chi \in B) \}$$

$$= \{ \chi : \chi \in A \land \chi \in B \}$$

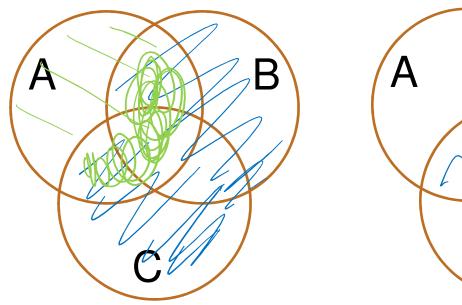
$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

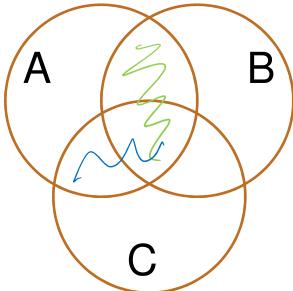
Proof technique: To show C = D show $x \in C \rightarrow x \in D$ and $x \in D \rightarrow x \in C$

Distributive Laws

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$





Power Set

Power Set of a set A = set of all subsets of A

$$\mathcal{P}(A) = \{ B : B \subseteq A \}$$

• e.g., let Days={M,W,F} and consider all the possible sets of days in a week you could ask a question in class

$$\mathcal{P}(\mathsf{Days})=?$$

$$\mathcal{P}(\emptyset)$$
=?

Power Set

Power Set of a set A = set of all subsets of A

$$\mathcal{P}(A) = \{ B : B \subseteq A \}$$

 e.g., let Days={M,W,F} and consider all the possible sets of days in a week you could ask a question in class

$$\mathcal{P}(Days) = \{ \{M, W, F\}, \{M, W\}, \{M, F\}, \{W, F\}, \{M\}, \{W\}, \{F\}, \emptyset \} \}$$

$$\mathcal{P}(\emptyset)$$
={ \emptyset } $\neq \emptyset$

Cartesian Product

$$A \times B = \{ (a,b) : a \in A, b \in B \}$$

 $\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.

 $\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

If A =
$$\{1, 2\}$$
, B = $\{a, b, c\}$, then A × B = $\{(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)\}$.

$$A \times \emptyset = \{(a, b) : a \in A \land b \in \emptyset\} = \{(a, b) : a \in A \land F\} = \emptyset$$

Representing Sets Using Bits

- Suppose universe U is $\{1,2,\ldots,n\}$
- Can represent set $B \subseteq U$ as a vector of bits:

```
b_1b_2 \dots b_n where b_i=1 when i \in B
b_i=0 when i \notin B
```

- Called the characteristic vector of set B
- Given characteristic vectors for A and B
 - What is characteristic vector for $A \cup B$? $A \cap B$?

UNIX/Linux File Permissions

```
    ls -l
    drwxr-xr-x ... Documents/
    -rw-r--r- ... file1
```

- Permissions maintained as bit vectors
 - Letter means bit is 1
 - "-" means bit is 0.

Bitwise Operations

Java: z=x|y

V 00110111

Java: z=x&y

Java: $z=x^y$

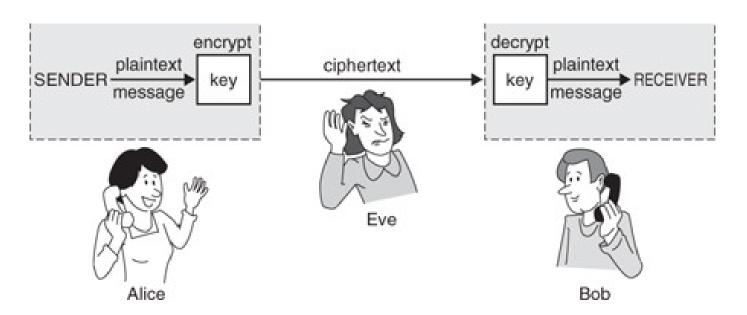
A Useful Identity

• If x and y are bits: $(x \oplus y) \oplus y = ?$

What if x and y are bit-vectors?

Private Key Cryptography

- Alice wants to communicate message secretly to Bob so that eavesdropper Eve who hears their conversation cannot tell what Alice's message is.
- Alice and Bob can get together and privately share a secret key K ahead of time.



One-Time Pad

- Alice and Bob privately share random n-bit vector K
 - Eve does not know K
- Later, Alice has n-bit message m to send to Bob
 - Alice computes $C = m \oplus K$
 - Alice sends C to Bob
 - Bob computes $m = C \oplus K$ which is $(m \oplus K) \oplus K$
- Eve cannot figure out m from C unless she can guess K

Russell's Paradox

$$S = \{ x : x \notin x \}$$

Suppose for contradiction that $S \in S$...

Russell's Paradox

$$S = \{ x : x \notin x \}$$

Suppose for contradiction that $S \in S$. Then, by definition of $S, S \notin S$, but that's a contradiction.

Suppose for contradiction that $S \notin S$. Then, by definition of the set $S, S \in S$, but that's a contradiction, too.

This is reminiscent of the truth value of the statement "This statement is false."