Lecture 8: Predicate Logic Proofs

MY MATH TEACHER WAS A BIG BELIEVER IN PROOF BY INTIMIDATION.

Last class: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it

Not like other rules

Prove:
$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$

1.1. $(p \rightarrow q) \land (q \rightarrow r)$ Assumption
1.2. $p \rightarrow q$ \land Elim: 1.1
1.3. $q \rightarrow r$ \land Elim: 1.1
1.4.1. p Assumption
1.4.2. q MP: 1.2, 1.4.1
1.4.3. r MP: 1.3, 1.4.2
1.4. $p \rightarrow r$ Direct Proof Rule
1. $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$ Direct Proof Rule

Inference Rules for Quantifiers: First look

$$\begin{array}{c|c} \hline P(c) \text{ for some } c \\ \hline \vdots \\ \exists x P(x) \end{array} \xrightarrow{\text{Elim } \forall} & \forall x P(x) \\ \hline \vdots \\ P(a) \text{ for any } a \end{array}$$

...P(a)

 $\forall x P(x)$

Intro ∀

•••

* in the domain of P

Elim 3

∴ P(c) for some special** c

** By special, we mean that c is a name for a value where P(c) is true. We can't use anything else about that value, so c has to be a NEW name!

Can use

Predicate logic inference rules

whole formulas only

- Predicate logic equivalences (De Morgan's) even on subformulas
- Propositional logic inference rules whole formulas only
- Propositional logic equivalences even on subformulas

Prove $\forall x P(x) \rightarrow \exists x P(x)$

The main connective is implication so Direct Proof Rule seems good

Prove $\forall x P(x) \rightarrow \exists x P(x)$

No holes. Just need to clean up.

1.1. $\forall x P(x)$ Assumption1.2 P(a)Elim $\forall: 1.1$

1.5. $\exists x P(x)$ Intro $\exists : 1.2$ **1.** $\forall x P(x) \rightarrow \exists x P(x)$ Direct Proof Rule

Prove $\forall x P(x) \rightarrow \exists x P(x)$

- **1.1.** $\forall x P(x)$ Assumption **1.2** P(a) Elim \forall : **1.1**
- **1.3.** $\exists x P(x)$ Intro $\exists: 1.2$

- **1.** $\forall x P(x) \rightarrow \exists x P(x)$ Direct Proof Rule

Working forwards as well as backwards:

In applying "Intro \exists " rule we didn't know what expression we might be able to prove P(c) for, so we worked forwards to figure out what might work.

Predicate Logic Proofs with more content

- In propositional logic we could just write down other propositional logic statements as "givens"
- Here, we also want to be able to use domain knowledge so proofs are about something specific
- Example:

 Given the basic properties of arithmetic on integers, define:

Predicate Definitions $Even(x) \equiv \exists y (x = 2 \cdot y)$ $Odd(x) \equiv \exists y (x = 2 \cdot y + 1)$

A Not so Odd Example

Domain of Discourse Integers Predicate DefinitionsEven(x) = $\exists y (x = 2 \cdot y)$ Odd(x) = $\exists y (x = 2 \cdot y + 1)$

Prove "There is an even number"

Formally: prove $\exists x Even(x)$

A Not so Odd Example

Domain of Discourse Integers Predicate DefinitionsEven(x) = $\exists y (x = 2 \cdot y)$ Odd(x) = $\exists y (x = 2 \cdot y + 1)$

Prove "There is an even number"

Formally: prove $\exists x Even(x)$

1.	2 = 2 ·1	Arithmetic
2.	∃y (2 = 2 ·y)	Intro ∃: 1
3.	Even(2)	Definition of Even: 2
4.	∃x Even(x)	Intro ∃: 3

A Prime Example

Domain of Discourse Integers

Predicate Definitions $Even(x) \equiv \exists y (x = 2 \cdot y)$ $Odd(x) \equiv \exists y (x = 2 \cdot y + 1)$ $Prime(x) \equiv "x > 1 \text{ and } x \neq a \cdot b \text{ for}$ all integers a, b with 1 < a < x''

Prove "There is an even prime number"

A Prime Example

Domain of Discourse Integers **Predicate Definitions**

Even(x) $\equiv \exists y (x = 2 \cdot y)$ Odd(x) $\equiv \exists y (x = 2 \cdot y + 1)$ Prime(x) $\equiv "x > 1$ and $x \neq a \cdot b$ for all integers a, b with 1<a<x"

Prove "There is an even prime number"

Formally: prove $\exists x (Even(x) \land Prime(x))$

1.	$2 = 2 \cdot 1$	Arithmetic
2.	Prime(2)*	Property of integers

* Later we will further break down "Prime" using quantifiers to prove statements like this

A Prime Example

Domain of Discourse

Integers

Predicate Definitions

Even(x) $\equiv \exists y (x = 2 \cdot y)$ Odd(x) $\equiv \exists y (x = 2 \cdot y + 1)$ Prime(x) $\equiv "x > 1$ and $x \neq a \cdot b$ for all integers a, b with 1 < a < x''

Prove "There is an even prime number"

Formally: prove $\exists x (Even(x) \land Prime(x))$

1.	$2 = 2 \cdot 1$	Arithmetic
2.	Prime(2)*	Property of integers
3.	∃y (2 = 2 ·y)	Intro ∃: 1
4.	Even(2)	Defn of Even: 3
5.	Even(2) ^ Prime(2))	Intro ∧: 2, 4
6.	$\exists x (Even(x) \land Prime(x))$	Intro ∃: 5

* Later we will further break down "Prime" using quantifiers to prove statements like this

Inference Rules for Quantifiers: First look

$$\begin{array}{c|c} \hline P(c) \text{ for some } c \\ \hline \vdots \\ \exists x P(x) \end{array} \xrightarrow{\text{Elim } \forall} & \forall x P(x) \\ \hline \vdots \\ P(a) \text{ for any } a \end{array}$$

...P(a)

 $\forall x P(x)$

Intro ∀

•••

* in the domain of P

Elim 3

∴ P(c) for some special** c

** By special, we mean that c is a name for a value where P(c) is true. We can't use anything else about that value, so c has to be a NEW name!

Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

1. Let a be an arbitrary integer

3. $\forall x (Even(x) \rightarrow Even(x^2))$

1.1,2

3. $\forall x (Even(x) \rightarrow Even(x^2))$

Intro ∀: 1,2

Even and Odd	Even(x) $\equiv \exists y (x=2y)$ Odd(x) $\equiv \exists y (x=2y+1)$ Domain: Integers			
$\begin{array}{c c} \hline & & \\ \hline \hline & & \\ \hline \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline \hline & & \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \hline \\ \hline \hline$	cial** c			
Prove: "The square of every even number is even."				
Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$				
1. Let a be an arbitrary integer				
2.1 Even(a) Assumption				
2.2 $\exists y (a = 2y)$ Definition of	Even			
2.3 a = 2b Elim ∃: b spe	cial depends on a			
2.5 $\exists y (a^2 = 2y)$ Intro \exists rule: 2.6 Even(a^2)Definition of	Need a ² = 2c for some c			
2. Even(a) \rightarrow Even(a ²) Direct proof	rule			
2 $\forall y (E_{y,o,p}(y)) \rightarrow E_{y,o,p}(y^2)$ let $r_0 \forall y \neq 1, 2$				

3. $\forall x (Even(x) \rightarrow Even(x^2))$ Intro $\forall : 1,2$

Even and Odd

Even(x) $\equiv \exists y (x=2y)$ Odd(x) $\equiv \exists y (x=2y+1)$ Domain: Integers

Prove: "The square of every even number is even." Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

1. Let **a** be an arbitrary integer

- **2.1** Even(a)
- **2.2** ∃y (**a** = 2y)
- **2.3 a** = 2**b**

2.4
$$a^2 = 4b^2 = 2(2b^2)$$

2.5 ∃y (**a**² = 2y)

2.6 Even(a²)

2. Even(a) \rightarrow Even(a²)

3. $\forall x (Even(x) \rightarrow Even(x^2))$

Assumption

- Definition of Even
- Elim ∃: b special depends on a

Algebra

Intro \exists rule

Used
$$a^2 = 2c$$
 for $c=2b^2$

Definition of Even

Direct proof rule

Why did we need to say that **b** depends on **a**?

There are extra conditions on using these rules:

Over integer domain: $\forall x \exists y (y \geq x)$ is True but $\exists y \forall x (y \geq x)$ is False

BAD "PROOF"

- **1.** $\forall x \exists y (y \geq x)$ Given
- 2. Let a be an arbitrary integer
- 3. $\exists y (y \ge a)$ Elim ∀: **1**
- 4. b≥a Elim \exists : **b** special depends on **a**
- **5.** $\forall x (b \ge x)$ Intro $\forall : 2,4$
- 6. $\exists y \forall x (y \ge x)$ Intro $\exists : 5$

Why did we need to say that **b** depends on **a**?

There are extra conditions on using these rules:

Over integer domain: $\forall x \exists y (y \ge x)$ is True but $\exists y \forall x (y \ge x)$ is False

Can't get rid of a since another name in the same line, b, depends on it!

Why did we need to say that **b** depends on **a**?

There are extra conditions on using these rules:

Over integer domain: $\forall x \exists y (y \ge x)$ is True but $\exists y \forall x (y \ge x)$ is False

Can't get rid of a since another name in the same line, b, depends on it!

Inference Rules for Quantifiers: Full version

$$\begin{array}{c|c} P(c) \text{ for some c} \\ \hline \\ Intro \exists \\ & \vdots \\ \end{array} \begin{array}{c} \exists x \ P(x) \end{array} \end{array} \xrightarrow[Elim \forall]{} & \forall x \ P(x) \\ \hline \\ & \vdots \\ \end{array} \begin{array}{c} \forall x \ P(x) \\ \hline \\ & \vdots \\ \end{array} \begin{array}{c} \forall x \ P(x) \\ \hline \\ & \vdots \\ \end{array} \begin{array}{c} P(a) \ for \ any \ a \end{array}$$

Intro
$$\forall$$
Let a be arbitrary*"...P(a) $\exists x P(x)$ $\therefore \forall x P(x)$ $\exists r P(x)$ $\therefore \forall r P(x)$ $\therefore P(c)$ for some special** c* in the domain of P. No other
name in P depends on a** c is a NEW name.
List all dependencies for c.

- We often write proofs in English rather than as fully formal proofs
 - They are more natural to read
- English proofs follow the structure of the corresponding formal proofs
 - Formal proof methods help to understand how proofs really work in English...

... and give clues for how to produce them.

An English Proof

Predicate DefinitionsEven(x) = $\exists y (x = 2 \cdot y)$ Odd(x) = $\exists y (x = 2 \cdot y + 1)$

Prove "There is an even integer"

Proof: $2 = 2 \cdot 1$ 1. $2 = 2 \cdot 1$ Arithmeticso 2 equals 2 times an
integer.2. $\exists y (2 = 2 \cdot y)$ Intro $\exists : 1$ Therefore 2 is even.3. Even(2)Defn of Even: 2Therefore, there is an
even integer4. $\exists x Even(x)$ Intro $\exists : 3$

English Even and Odd

Prove "The square of every even integer is even."

Proof: Let a be an arbitrary 1 even integer.	. Le 2.1	t <mark>a</mark> be an arbit Even(<mark>a</mark>)	rary integer Assumption
Then, by definition, a = 2b for some integer b (depending on a).	2.2 2.3	∃y (a = 2y) a = 2b	Definition b special depends on a
Squaring both sides, we get $a^2 = 4b^2 = 2(2b^2)$.	2.4	a ² = 4b ² = 2(2k	²) Algebra
Since 2 ^{b²} is an integer, by definition , a ² is even.	2.5 2.6	∃y (a² = 2y) Even(a²)	Definition
Since a was arbitrary, it follows that the square of every even number is even.	Evo ∀x	en(a)→Even(a ² ‹ (Even(x)→Eve	²) en(x ²))

Predicate Definitions Even(x) $\equiv \exists y \ (x = 2y)$ Odd(x) $\equiv \exists y \ (x = 2y + 1)$

Prove "The square of every odd number is odd."

Predicate Definitions Even(x) $\equiv \exists y \ (x = 2y)$ Odd(x) $\equiv \exists y \ (x = 2y + 1)$

Prove "The square of every odd number is odd."

Proof: Let b be an arbitrary odd number. Then, b = 2c+1 for some integer c (depending on b). Therefore, $b^2 = (2c+1)^2 = 4c^2 + 4c + 1 = 2(2c^2 + 2c) + 1$. Since $2c^2+2c$ is an integer, b^2 is odd. The statement follows since b was arbitrary. Formal proofs follow simple well-defined rules and should be easy to check

– In the same way that code should be easy to execute

- English proofs correspond to those rules but are designed to be easier for humans to read
 - Easily checkable in principle