CSE 311: Foundations of Computing

Lecture 8: Predicate Logic Proofs
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Last class: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate
it and one to introduce it

Elim A AAB A:B
il Intro A
~ A B ~AAB
Elim Vv AvB : —A Intro Vv A
- B *~AVB,BVA
Modus Ponens A , A—B Direct Proof

Rule

Not like other rules



Last class: Example

Prove: ((p—>a)A(g—>1r)—>(p—1)

1.1. (p » q) N (q — 1r) Assumption

1.2. p—q A Elim: 1.1

1.3. g—r A Elim: 1.1
141. p Assumption
1.4.2. q MP:1.2,14.1
1.43. r MP: 1.3,1.4.2

1.4. p-or Direct Proof Rule

1. (p->q@A(g@—-1)) - (p—1) Direct Proof Rule



Inference Rules for Quantifiers: First look

P(c) for some c . Vx P(x)
Intro 3 Elim V
Ix P(x) - P(a) for any a
v Let a be arbitrary*”...P(a) [Eim3 3x P(x)
Vx P(x) = P(c) for some special** c
*in the domain of P : :
** By special, we mean thatcis a

name for a value where P(c) is true.
We can’t use anything else about that
value, so c has to be a NEW name!




Predicate Logic Proofs

e Can use

— Predicate logic inference rules
whole formulas only

— Predicate logic equivalences (De Morgan’s)

even on subformulas

— Propositional logic inference rules
whole formulas only

— Propositional logic equivalences

even on subformulas



P(c) for some c

My First Predicate Logic Proof e
Elim V VX P(X)
Prove Vx P(x) — 3x P(x) - Playforany:

The main connective is implication

5. Vx p(x)_> Jx P(x) @ so Direct Proof Rule seems good



P(c) for some c

My First Predicate Logic Proof e
Elim V VX P(X)
Prove Vx P(x) — 3x P(x) - Playforany:

1.1. VxP(x) Assumption

We need an d we don’t have
so “intro 4” rule makes sense

15. WP ()

1. Vx P(x)—» dx P(x) Direct Proof Rule



P(c) for some c

My First Predicate Logic Proof e
Elim V VX P(X)
Prove Vx P(x) — 3x P(x) - Playforany:

1.1. VxP(x) Assumption

We need an d we don’t have
so “intro 4” rule makes sense

That requires P
15. 3xPx) It E(2)  forsomee
1. Vx P(x)—» dx P(x) Direct Proof Rule



P(c) for some c

My First Predicate Logic Proof e
Elim V VX P(X)
Prove Vx P(x) — 3x P(x) - Playforany:

1.1. VxP(x) Assumption
1.2 P(a) Elim V: 1.1

We could have picked any name)
or domain expression here.

Th ires P
15. 3xPx) It E(2) forsomee
1. Vx P(x)—» dx P(x) Direct Proof Rule



P(c) for some c

My First Predicate Logic Proof e
Elim V VX P(X)
Prove Vx P(x) — 3x P(x) - Playforany:

No holes. Just need to clean up.

1.1. VxP(x) Assumption
1.2 P(a) Elim V: 1.1

1.5. dx P(x) Intro 3: 1.2
1. Vx P(x)—» dx P(x) Direct Proof Rule



My First Predicate Logic Proof

Elim V

Prove Vx P(x) — dx P(x)

1.1. VxP(x) Assumption
1.2 P(a) Elim V: 1.1
1.3. dxP(x) Intro 3: 1.2

1. Vx P(x)—» dx P(x) Direct Proof Rule

Working forwards as well as backwards:

In applying “Intro 3” rule we didn’t know what expression

P(c) for some c

dx P(x)
Vx P(x)

=~ P(a) for any a

we might be able to prove P(c) for, so we worked forwards

to figure out what might work.



Predicate Logic Proofs with more content

* |n propositional logic we could just write down
other propositional logic statements as “givens”

* Here, we also want to be able to use domain
knowledge so proofs are about something specific

* Example: Domain of Discourse
Integers

* Given the basic properties of arithmetic on integers,
define:

Predicate Definitions
Even(x) =3y (x = 2-y)
pdd(x) =dy(x=2y+ 1))




A Not so Odd Example

Domain of Discourse| |Predicate Definitions
Integers ) |Even(x) =3y (x = 2-y)
Odd(x) =3y (x=2-y+1)

Prove “There is an even number”
Formally: prove dx Even(x)



A Not so Odd Example

Domain of Discourse| |Predicate Definitions
Integers ) |Even(x) =3y (x = 2-y)
Odd(x) =3y (x=2-y+1)

Prove “There is an even number”
Formally: prove dx Even(x)

1. 2=2-1 Arithmetic

2. dy(2=2y) Introd:1

3. Even(2) Definition of Even: 2
4, dx Even(x) Intro d: 3



A Prime Example

Domain of Discourse| [Predicate Definitions
Integers

Even(x) =3y (x = 2-y)

Odd(x)=3dy (x=2-y + 1)

Prime(x) = “x > 1 and x#a-b for

\_ all integers a, b with 1<a<x” /

Prove “There is an even prime number”



A Prime Example

Domain of Discourse| [Predicate Definitions
Integers

Even(x) =3y (x = 2-y)

Odd(x)=3dy (x=2-y + 1)

Prime(x) = “x > 1 and x#a-b for

\_ all integers a, b with 1<a<x” /

Prove “There is an even prime number”
Formally: prove dx (Even(x) A Prime(x))

1. 2=21 Arithmetic
2. Prime(2)” Property of integers

* Later we will further break down “Prime” using quantifiers to prove statements like this



A Prime Example

Domain of Discourse| [Predicate Definitions
Integers

Even(x) =3y (x = 2-y)

Odd(x)=3dy (x=2-y + 1)

Prime(x) = “x > 1 and x#a-b for

\_ all integers a, b with 1<a<x” /

Prove “There is an even prime number”
Formally: prove dx (Even(x) A Prime(x))

1. 2=21 Arithmetic

2. Prime(2)” Property of integers
3. dy (2 =2-y) Intro d: 1

4, Even(2) Defn of Even: 3

5. Even(2) A Prime(2)) Intro A: 2, 4

6. dx (Even(x) A Prime(x)) Intro 3: 5

* Later we will further break down “Prime” using quantifiers to prove statements like this



Inference Rules for Quantifiers: First look

P(c) for some c . Vx P(x)
Intro 3 Elim V
Ix P(x) - P(a) for any a
v Let a be arbitrary*”...P(a) [Eim3 3x P(x)
Vx P(x) = P(c) for some special** c
*in the domain of P : :
** By special, we mean thatcis a

name for a value where P(c) is true.
We can’t use anything else about that
value, so c has to be a NEW name!




Even(x) =3dy (x=2y)

Even and Odd Odd(x) =3y (x=2y+1)
Domain: Integers
——--'Let a be arbitrary*”...P(a) | [Elim 3 3x P(x)
Vx P(x) . P(c) for some special** c

Prove: “The square of every even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

3. Vx (Even(x)—Even(x?)) @



Even(x) =3dy (x=2y)

Even and Odd Odd(x) =3y (x=2y+1)
Domain: Integers
——--'Let a be arbitrary*”...P(a) | [Elim 3 3x P(x)
Vx P(x) . P(c) for some special** c

Prove: “The square of every even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer

2. Even(a)—Even(a?) @
3. Vx (Even(x)—Even(x?)) Intro V: 1,2



Even(x) =3dy (x=2y)

Even and Odd Odd(x) =3y (x=2y+1)
Domain: Integers
——--'Let a be arbitrary*”...P(a) | [Elim 3 3x P(x)
Vx P(x) . P(c) for some special** c

Prove: “The square of every even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer
2.1 Even(a) Assumption

2.6 Even(a?) @

2. Even(a)—Even(a?) Direct proof rule
3. Vx (Even(x)—Even(x?)) Intro V: 1,2



Even(x) =3dy (x=2y)

Even and Odd Odd(x) =3y (x=2y+1)
Domain: Integers
——--'Let a be arbitrary*”...P(a) | [Elim 3 3x P(x)
Vx P(x) . P(c) for some special** c

Prove: “The square of every even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer

2.1 Even(a) Assumption

2.2 dy(a=2y) Definition of Even

2.5 3Jy (a?=2y) @

2.6 Even(a?) Definition of Even
2. Even(a)—Even(a?) Direct proof rule

3. Vx (Even(x)—Even(x?)) Intro V: 1,2



Even(x) =3dy (x=2y)

Even and Odd Odd(x) =3y (x=2y+1)
Domain: Integers
——--'Let a be arbitrary*”...P(a) | [Elim 3 3x P(x)
Vx P(x) . P(c) for some special** c

Prove: “The square of every even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer

2.1 Even(a) Assumption
2.2 dy(a=2y) Definition of Even
2.5 3Jy (a?=2y) Intro d rule: @ g?zif:ezczc
2.6 Even(a?) Definition of Even
2. Even(a)—Even(a?) Direct proof rule

3. Vx (Even(x)—Even(x?)) Intro V: 1,2



Even(x) =3dy (x=2y)

Even and Odd Odd(x) =3y (x=2y+1)
Domain: Integers
——--'Let a be arbitrary*”...P(a) | [Elim 3 3x P(x)
Vx P(x) . P(c) for some special** c

Prove: “The square of every even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer

2.1 Even(a) Assumption
2.2 dy(a=2y) Definition of Even
2.3 a=2b Elim 3: b special depends on a
2.5 3Jy (a?=2y) Intro d rule: @ g?zif:ezczc
2.6 Even(a?) Definition of Even

2. Even(a)—Even(a?) Direct proof rule

3. Vx (Even(x)—Even(x?)) Intro V: 1,2



Even(x) =3dy (x=2y)

Even and Odd Odd(x) =3y (x=2y+1)
Domain: Integers
——--'Let a be arbitrary*”...P(a) | [Elim 3 3x P(x)
Vx P(x) . P(c) for some special** c

Prove: “The square of every even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer

2.1 Even(a) Assumption
2.2 dy(a=2y) Definition of Even
2.3 a=2b Elim 3: b special depends on a
2.4 a’=4b’=2(2b?) Algebra
2.5 3y (a?=2y) Intro 3 rule [ Useda’ = 2cforc=2b°
2.6 Even(a?) Definition of Even

2. Even(a)—Even(a?) Direct proof rule

3. Vx (Even(x)—Even(x?)) Intro V: 1,2



Why did we need to say that b depends on a?

There are extra conditions on using these rules:

——_{'Let a be arbitrary*”...P(a)  [Eiim3 Ix P(x)
Vx P(x) = P(c) for some special** c
*in the domain of P ** ¢ has to be a NEW name.

Over integer domain: Vx dy (y = x) is True but dyVx (y = x) is False

BAD “PROOF”

1. Vx3dy(y=x) Given

2. Let a be an arbitrary integer

3. dy(y=a) ElimV: 1

4. b=>a Elim 3: b special depends on a
5. Vx(b=>=x) Intro V: 2,4

6. 3dyVx(y=x) Introd:5



Why did we need to say that b depends on a?

There are extra conditions on using these rules:

——_{'Let a be arbitrary*”...P(a)  [Eiim3 Ix P(x)
Vx P(x) = P(c) for some special** c
*in the domain of P ** ¢ has to be a NEW name.

Over integer domain: Vx dy (y = x) is True but dyVx (y = x) is False

BAD “PROOF”
1. Vx3dy(y=x) Given
2. Let a be an arbitrary integer
3. dy(y=a) ElimV: 1
4. b=>a Elim 3: b special depends on a
5. Vx(b=>=x) Intro V: 2,4
f’ 6. 3dyVx(y=x) Introd:5

Can’t get rid of a since another name in the same line, b, depends on it!



Why did we need to say that b depends on a?

There are extra conditions on using these rules:

oy LLet a be arbitrary*”..P(a)  [Eim3 3x P(x)
. P(c) for some special** c

** cisa NEW name.
List all dependencies for c.

*in the domain of P. No other
name in P dependson a

Over integer domain: Vx dy (y = x) is True but dyVx (y = x) is False

BAD “PROOF”

1. Vx3dy(y=x) Given

2. Let a be an arbitrary integer

3. dy(y=a) ElimV: 1

4. b=>a Elim 3: b special depends on a

T)T VXW lnirOW
r’& AyVx (y = x) Introd:5

Can’t get rid of a since another name in the same line, b, depends on it!



Inference Rules for Quantifiers: Full version

P(c) for some c . Vx P(x)
Intro 3 Elim V
Ix P(x) ~ P(a) for any a
~——'Let a be arbitrary*”...P(a)  [Elim3 3x P(x)
Vx P(x) = P(c) for some special** c
*in the domain of P. No other ** ¢ jsa NEW name.

name in P depends on a List all dependencies for c.




English Proofs

 We often write proofs in English rather than
as fully formal proofs

— They are more natural to read

* English proofs follow the structure of the
corresponding formal proofs

— Formal proof methods help to understand how
proofs really work in English...

... and give clues for how to produce them.



Predicate Definitions

An English Proof Even(x) = 3y (x = 2+y)

Odd(x) =3y (x =2y +1)

J
Prove “There is an even integer”
Proof:
2=21 1. 2=21 Arithmetic
so 2 equals 2 times an 2. dy(2=2-vy) Intro3:1
integer.
Therefore 2 is even. 3. Even(2) Defn of Even: 2
Therefore, there is an 4. 4Hx Even(x) Intro 4: 3

even integer g



English Even and Odd

Even(x) =3y (x=2y)
Odd(x) =3y (x=2y+1)
Domain: Integers

Prove “The square of every even integer is even.”

Proof: Let a be an arbitrary 1. Let a be an arbitrary integer

even integer.

Then, by definition, a = 2b
for some integer b
(depending on a).

Squaring both sides, we get
a%=4b?% = 2(2b?).

Since 2b? is an integer, by

2.1 Even(a) Assumption

2.2 3y (a=2y) Definition
2.3 a=2b b special depends on a

2.4 a’?=4b?%=2(2b?) Algebra

2.5 3Ty (a?=2y)

definition, aZis even. 2.6 Even(a?) Definition
Since a was arbitrary, it 2. Even(a)—Even(a?)
follows that the square of 3. Vx(Even(x)—Even(x?))

every even number is even. i



Predicate Definitions

Even(x) =3y (x = 2y)

Domain of Discourse

Integers

Prove “The square of every odd number is odd.”




Predicate Definitions - -
Domain of Discourse

Even and Odd Even(x) =3y (x = 2y) | Integers

Odd(x)=3y (x =2y + 1)

Prove “The square of every odd number is odd.”

Proof: Let b be an arbitrary odd number.
Then, b = 2c+1 for some integer c (depending on b).
Therefore, b?2=(2c+1)?= 4c?+4c+ 1 =2(2c?+ 2c) + 1.

Since 2c%+2c is an integer, b? is odd. The statement
follows since b was arbitrary. B



Proofs

 Formal proofs follow simple well-defined rules and
should be easy to check

— In the same way that code should be easy to execute

* English proofs correspond to those rules but are
designhed to be easier for humans to read

— Easily checkable in principle



