
CSE 311: Foundations of Computing

Lecture 8:  Predicate Logic Proofs



Last class: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate 

it and one to introduce it

A ∧ B

∴ A, B

A ; B   

∴ A ∧ B 

A              x

∴ A ∨ B, B ∨ A

A ; A → B

∴ B

A ⇒ B  

∴ A → B

Not like other rules

Elim ∧ Intro  ∧

A ∨ B ; ¬A

∴ B
Elim ∨ Intro  ∨

Modus Ponens
Direct Proof 

Rule



Last class: Example

Prove:    ((p → q) ∧ (q → r)) → (p → r)

1.1. � → � ∧ (� → �) Assumption

1.2. � → � ∧ Elim: 1.1

1.3. � → � ∧ Elim: 1.1

1.4.1. � Assumption

1.4.2. � MP: 1.2, 1.4.1

1.4.3. � MP: 1.3, 1.4.2

1.4. � → � Direct Proof Rule

1. � → � ∧ � → � → (� → �) Direct Proof Rule



Inference Rules for Quantifiers: First look

* in the domain of P 
** By special, we mean that c is a 

name for a value where P(c) is true. 

We can’t use anything else about that 

value, so c has to be a NEW name!

∀x P(x)        
∴ P(a) for any a

“Let a be arbitrary*”...P(a)

∴ ∀x P(x)

P(c) for some c

∴ ∃x P(x)
Intro ∃ Elim ∀

Intro ∀
∃x P(x)

∴ P(c) for some special** c

Elim ∃



Predicate Logic Proofs

• Can use

– Predicate logic inference rules

whole formulas only

– Predicate logic equivalences (De Morgan’s)

even on subformulas

– Propositional logic inference rules

whole formulas only

– Propositional logic equivalences

even on subformulas



My First Predicate Logic Proof

Prove ∀x P(x) → ∃x P(x)

5. ∀
 � 
 → ∃
 �(
) 

The main connective is implication

so Direct Proof Rule seems good 



My First Predicate Logic Proof

Prove ∀x P(x) → ∃x P(x)

1. ∀
 � 
 → ∃
 � 
 Direct Proof Rule

1.1. ∀
 � 
 Assumption

1.5. ∃
 � 


We need an ∃ we don’t have 

so “intro ∃” rule makes sense



My First Predicate Logic Proof

Prove ∀x P(x) → ∃x P(x)

1. ∀
 � 
 → ∃
 � 
 Direct Proof Rule

1.1. ∀
 � 
 Assumption

1.5. ∃
 � 
 Intro ∃:

We need an ∃ we don’t have 

so “intro ∃” rule makes sense 

That requires P(c) 

for some c.  



My First Predicate Logic Proof

Prove ∀x P(x) → ∃x P(x)

1. ∀
 � 
 → ∃
 � 
 Direct Proof Rule

1.1. ∀
 � 
 Assumption

1.2 �(�) Elim ∀: 1.1

1.5. ∃
 � 
 Intro ∃:

We could have picked any name

or domain expression here.  

That requires P(c) 

for some c.  



My First Predicate Logic Proof

Prove ∀x P(x) → ∃x P(x)

1. ∀
 � 
 → ∃
 � 
 Direct Proof Rule

1.1. ∀
 � 
 Assumption

1.2 �(�) Elim ∀: 1.1

1.5. ∃
 � 
 Intro ∃: 1.2

No holes.  Just need to clean up. 



My First Predicate Logic Proof

Prove ∀x P(x) → ∃x P(x)

1. ∀
 � 
 → ∃
 � 
 Direct Proof Rule

1.1. ∀
 � 
 Assumption

1.2 �(�) Elim ∀: 1.1

1.3. ∃
 � 
 Intro ∃: 1.2

Working forwards as well as backwards: 

In applying “Intro ∃” rule we didn’t know what expression

we might be able to prove P(c) for, so we worked forwards

to figure out what might work.



Predicate Logic Proofs with more content

• In propositional logic we could just write down 

other propositional logic statements as “givens”

• Here, we also want to be able to use domain 

knowledge so proofs are about something specific

• Example:

• Given the basic properties of arithmetic on integers, 

define:

Even(x) ≡ ∃y (x = 2⋅y)

Odd(x) ≡ ∃y (x = 2⋅y + 1)

Predicate Definitions

Integers

Domain of Discourse



A Not so Odd Example

Even(x) ≡ ∃y (x = 2⋅y)

Odd(x) ≡ ∃y (x = 2⋅y + 1)

Predicate Definitions

Integers

Domain of Discourse

Formally: prove  ∃x Even(x)

Prove  “There is an even number”



A Not so Odd Example

Even(x) ≡ ∃y (x = 2⋅y)

Odd(x) ≡ ∃y (x = 2⋅y + 1)

Predicate Definitions

Integers

Domain of Discourse

Formally: prove  ∃x Even(x)

Prove  “There is an even number”

1. 2 = 2⋅1 Arithmetic

2. ∃y (2 = 2⋅y) Intro ∃: 1

3. Even(2) Definition of Even: 2

4. ∃x Even(x) Intro ∃: 3



A Prime Example

Even(x) ≡ ∃y (x = 2⋅y)

Odd(x) ≡ ∃y (x = 2⋅y + 1)

Prime(x) ≡ “x > 1 and x≠a⋅b for 

all integers a, b with 1<a<x”

Predicate Definitions

Integers

Domain of Discourse

Prove  “There is an even prime number”



A Prime Example

Even(x) ≡ ∃y (x = 2⋅y)

Odd(x) ≡ ∃y (x = 2⋅y + 1)

Prime(x) ≡ “x > 1 and x≠a⋅b for 

all integers a, b with 1<a<x”

Predicate Definitions

Integers

Domain of Discourse

1. 2 = 2⋅1 Arithmetic

2. Prime(2) Property of integers

Prove  “There is an even prime number”

Formally: prove  ∃x (Even(x) ∧ Prime(x))

*

* Later we will further break down “Prime” using quantifiers to prove statements like this



A Prime Example

Even(x) ≡ ∃y (x = 2⋅y)

Odd(x) ≡ ∃y (x = 2⋅y + 1)

Prime(x) ≡ “x > 1 and x≠a⋅b for 

all integers a, b with 1<a<x”

Predicate Definitions

Integers

Domain of Discourse

1. 2 = 2⋅1 Arithmetic

2. Prime(2) Property of integers

3. ∃y (2 = 2⋅y) Intro ∃: 1

4. Even(2) Defn of Even: 3

5. Even(2) ∧ Prime(2)) Intro ∧: 2, 4

6. ∃x (Even(x) ∧ Prime(x)) Intro ∃: 5

Prove  “There is an even prime number”

Formally: prove  ∃x (Even(x) ∧ Prime(x))

* Later we will further break down “Prime” using quantifiers to prove statements like this

*



Inference Rules for Quantifiers: First look

* in the domain of P 
** By special, we mean that c is a 

name for a value where P(c) is true. 

We can’t use anything else about that 

value, so c has to be a NEW name!

∀x P(x)        
∴ P(a) for any a

“Let a be arbitrary*”...P(a)

∴ ∀x P(x)

P(c) for some c

∴ ∃x P(x)
Intro ∃ Elim ∀

Intro ∀
∃x P(x)

∴ P(c) for some special** c

Elim ∃



Even and Odd

Prove: “The square of every even number is even.”

Formal proof of: ∀x (Even(x) → Even(x2))

Even(x) ≡ ∃y  (x=2y)     

Odd(x) ≡ ∃y  (x=2y+1)

Domain: Integers 

3.   ∀x (Even(x)→Even(x2))



Even and Odd

Prove: “The square of every even number is even.”

Formal proof of: ∀x (Even(x) → Even(x2))

1. Let a be an arbitrary integer

2.   Even(a)→Even(a2)

3.   ∀x (Even(x)→Even(x2))     Intro ∀: 1,2

Even(x) ≡ ∃y  (x=2y)     

Odd(x) ≡ ∃y  (x=2y+1)

Domain: Integers 



Even and Odd

Prove: “The square of every even number is even.”

Formal proof of: ∀x (Even(x) → Even(x2))

1. Let a be an arbitrary integer

2.1   Even(a) Assumption

 

2.6  Even(a2)

2.   Even(a)→Even(a2) Direct proof rule

3.   ∀x (Even(x)→Even(x2)) Intro ∀: 1,2

Even(x) ≡ ∃y  (x=2y)     

Odd(x) ≡ ∃y  (x=2y+1)

Domain: Integers 



Even and Odd

Prove: “The square of every even number is even.”

Formal proof of: ∀x (Even(x) → Even(x2))

1. Let a be an arbitrary integer

2.1   Even(a) Assumption

2.2 ∃y (a = 2y) Definition of Even

2.5   ∃y (a2 = 2y)

2.6  Even(a2) Definition of Even

2.   Even(a)→Even(a2) Direct proof rule

3.   ∀x (Even(x)→Even(x2))         Intro ∀: 1,2

Even(x) ≡ ∃y  (x=2y)     

Odd(x) ≡ ∃y  (x=2y+1)

Domain: Integers 



Even and Odd

Prove: “The square of every even number is even.”

Formal proof of: ∀x (Even(x) → Even(x2))

1. Let a be an arbitrary integer

2.1   Even(a) Assumption

2.2 ∃y (a = 2y) Definition of Even

2.5   ∃y (a2 = 2y) Intro ∃ rule: 

2.6  Even(a2) Definition of Even

2.   Even(a)→Even(a2) Direct proof rule

3.   ∀x (Even(x)→Even(x2))     Intro ∀: 1,2

Need a2 = 2c

for some c

Even(x) ≡ ∃y  (x=2y)     

Odd(x) ≡ ∃y  (x=2y+1)

Domain: Integers 



Even and Odd

Prove: “The square of every even number is even.”

Formal proof of: ∀x (Even(x) → Even(x2))

1. Let a be an arbitrary integer

2.1   Even(a) Assumption

2.2 ∃y (a = 2y) Definition of Even

2.3   a = 2b Elim ∃: b special depends on a

2.5   ∃y (a2 = 2y) Intro ∃ rule: 

2.6  Even(a2) Definition of Even

2.   Even(a)→Even(a2) Direct proof rule

3.   ∀x (Even(x)→Even(x2))     Intro ∀: 1,2

Need a2 = 2c

for some c

Even(x) ≡ ∃y  (x=2y)     

Odd(x) ≡ ∃y  (x=2y+1)

Domain: Integers 



Even and Odd

Prove: “The square of every even number is even.”

Formal proof of: ∀x (Even(x) → Even(x2))

1. Let a be an arbitrary integer

2.1   Even(a) Assumption

2.2 ∃y (a = 2y) Definition of Even

2.3   a = 2b Elim ∃: b special depends on a

2.4   a2 = 4b2 = 2(2b2)     Algebra

2.5   ∃y (a2 = 2y) Intro ∃ rule

2.6  Even(a2) Definition of Even

2.   Even(a)→Even(a2) Direct proof rule

3.   ∀x (Even(x)→Even(x2))     Intro ∀: 1,2

Used a2 = 2c for c=2b2

Even(x) ≡ ∃y  (x=2y)     

Odd(x) ≡ ∃y  (x=2y+1)

Domain: Integers 



Why did we need to say that b depends on a?  

There are extra conditions on using these rules:

Over integer domain: ∀x ∃y (y ≥ x) is True but ∃y∀x (y ≥ x) is False

1. ∀x ∃y (y ≥ x) Given

2. Let a be an arbitrary integer

3. ∃y (y ≥ a) Elim ∀: 1

4. b ≥ a Elim ∃: b special depends on a

5. ∀x (b ≥ x)                 Intro ∀: 2,4

6. ∃y∀x (y ≥ x) Intro ∃ : 5

BAD “PROOF”



Why did we need to say that b depends on a?  

There are extra conditions on using these rules:

Over integer domain: ∀x ∃y (y ≥ x) is True but ∃y∀x (y ≥ x) is False

1. ∀x ∃y (y ≥ x) Given

2. Let a be an arbitrary integer

3. ∃y (y ≥ a) Elim ∀: 1

4. b ≥ a Elim ∃: b special depends on a

5. ∀x (b ≥ x)                 Intro ∀: 2,4

6. ∃y∀x (y ≥ x) Intro ∃ : 5

BAD “PROOF”

Can’t get rid of a since another name in the same line, b, depends on it!



Why did we need to say that b depends on a?  

There are extra conditions on using these rules:

Over integer domain: ∀x ∃y (y ≥ x) is True but ∃y∀x (y ≥ x) is False

1. ∀x ∃y (y ≥ x) Given

2. Let a be an arbitrary integer

3. ∃y (y ≥ a) Elim ∀: 1

4. b ≥ a Elim ∃: b special depends on a

5. ∀x (b ≥ x)                 Intro ∀: 2,4

6. ∃y∀x (y ≥ x) Intro ∃ : 5

BAD “PROOF”

Can’t get rid of a since another name in the same line, b, depends on it!



Inference Rules for Quantifiers: Full version

∀x P(x)        
∴ P(a) for any a

P(c) for some c

∴ ∃x P(x)
Intro ∃ Elim ∀

* in the domain of P.  No other   

name in P depends on a 
** c is a NEW name. 

List all dependencies for c.

“Let a be arbitrary*”...P(a)

∴ ∀x P(x)
Intro ∀

∃x P(x)
∴ P(c) for some special** c

Elim ∃



English Proofs

• We often write proofs in English rather than 

as fully formal proofs

– They are more natural to read

• English proofs follow the structure of the 

corresponding formal proofs

– Formal proof methods help to understand how 

proofs really work in English...

... and give clues for how to produce them.



2 = 2⋅1 

so 2 equals 2 times an 

integer.

Therefore 2 is even.

Therefore, there is an 

even integer

An English Proof Even(x) ≡ ∃y (x = 2⋅y)

Odd(x) ≡ ∃y (x = 2⋅y + 1)

Predicate Definitions

Prove  “There is an even integer”

1. 2 = 2⋅1 Arithmetic

2. ∃y (2 = 2⋅y) Intro ∃: 1

3. Even(2) Defn of Even: 2

4. ∃x Even(x) Intro ∃: 3

Proof:



English Even and Odd

Prove “The square of every even integer is even.”

Even(x) ≡ ∃y  (x=2y)     

Odd(x) ≡ ∃y  (x=2y+1)

Domain: Integers 

1. Let a be an arbitrary integer

2.1   Even(a) Assumption

2.2 ∃y (a = 2y) Definition

2.3   a = 2b b special depends on a

2.4   a2 = 4b2 = 2(2b2) Algebra

2.5   ∃y (a2 = 2y)

2.6  Even(a2) Definition

2.   Even(a)→Even(a2)

3.   ∀x (Even(x)→Even(x2))

Proof: Let a be an arbitrary 

even integer.  

Then, by definition, a = 2b

for some integer b

(depending on a).

Squaring both sides, we get 

a2 = 4b2 = 2(2b2). 

Since 2b2 is an integer, by 

definition, a2 is even.

Since a was arbitrary, it 

follows that the square of 

every even number is even.



Even and Odd

Prove “The square of every odd number is odd.”

Even(x) ≡ ∃� � = 2�

Odd(x) ≡ ∃� (� = 2� + 1)

Predicate Definitions

Integers

Domain of Discourse



Even and Odd

Prove “The square of every odd number is odd.”

Proof: Let b be an arbitrary odd number.

Then, b = 2c+1 for some integer c (depending on b).

Therefore, b2 = (2c+1)2 =  4c2 + 4c + 1 = 2(2c2 + 2c) + 1.

Since 2c2+2c is an integer, b2 is odd. The statement    

follows since b was arbitrary.        

Even(x) ≡ ∃� � = 2�

Odd(x) ≡ ∃� (� = 2� + 1)

Predicate Definitions

Integers

Domain of Discourse



Proofs

• Formal proofs follow simple well-defined rules and 

should be easy to check

– In the same way that code should be easy to execute

• English proofs correspond to those rules but are 

designed to be easier for humans to read

– Easily checkable in principle


