CSE 311: Foundations of Computing

Lecture 7: Logical Inference

Regrade Request: Do it till Friday.

- So far we've considered:
 - How to understand and express things using propositional and predicate logic
 - How to compute using Boolean (propositional) logic
 - How to show that different ways of expressing or computing them are *equivalent* to each other
- Logic also has methods that let us *infer* implied properties from ones that we know
 - Equivalence is a small part of this

Applications of Logical Inference

Software Engineering

- Express desired properties of program as set of logical constraints
- Use inference rules to show that program implies that those constraints are satisfied
- Artificial Intelligence
 - Automated reasoning
- Algorithm design and analysis
 - e.g., Correctness, Loop invariants.
- Logic Programming, e.g. Prolog
 - Express desired outcome as set of constraints
 - Automatically apply logic inference to derive solution

- Start with hypotheses and facts
- Use rules of inference to extend set of facts
- Result is proved when it is included in the set

An inference rule: Modus Ponens

- If A and $A \rightarrow B$ are both true then B must be true
- Write this rule as $A : A \to B$ $\therefore B$
- Given: $A \longrightarrow B$

- If it is Wednesday then you have a 311 class today.

- It is Wednesday.
- Therefore, by Modus Ponens:
 - You have a 311 class today.

Show that **r** follows from **p**, $\mathbf{p} \rightarrow \mathbf{q}$, and $\mathbf{q} \rightarrow \mathbf{r}$

1.pGiven2. $p \rightarrow q$ Given3. $q \rightarrow r$ Given4.q $MP \rightarrow f$ 5.r $MP \rightarrow f$

Show that **r** follows from **p**, $\mathbf{p} \rightarrow \mathbf{q}$, and $\mathbf{q} \rightarrow \mathbf{r}$

1.	\boldsymbol{p}	Given
2.	p ightarrow q	Given
3.	$q \rightarrow r$	Given
4.	q	MP: 1, 2
5.	r	MP: 3, 4

Modus Ponens1.pGiven2. $p \rightarrow q$ Given3. $q \rightarrow r$ Given4.qMP: 1, 25.rMP: 3, 4

Proofs can use equivalences too

Show that $\neg p$ follows from $p \rightarrow q$ and $\neg q$

1.	$oldsymbol{p} ightarrow oldsymbol{q}$	Given
2.	$\neg \boldsymbol{q}$	Given
3.	$\neg q \rightarrow \neg p$	Contrapositive: 1
Λ		

Modus Ponens
$$A ; A \rightarrow B$$

 $\therefore B$

Inference Rules

Example (Modus Ponens):

If I have A and $A \rightarrow B$ both true, Then B must be true.

Axioms: Special inference rules

Example (Excluded Middle):

 $\therefore A \lor \neg A$

 $A \lor \neg A$ must be true.

Simple Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it

Not like other rules

Show that **r** follows from **p**, $\mathbf{p} \rightarrow \mathbf{q}$ and $(\mathbf{p} \land \mathbf{q}) \rightarrow \mathbf{r}$

How To Start:

We have givens, find the ones that go together and use them. Now, treat new things as givens, and repeat.

1. P Given
2.
$$p \rightarrow q$$
 Given
3. $(p \land q) \rightarrow r$ Given
4. q MP of 1,2
5 $p \land q$ Intro \land 1,4
6. r MP of 3.5

∴ B

 $\rightarrow B$

A ; A

 $\frac{A \land B}{\therefore A, B}$

 $\therefore A \land B$

Show that *r* follows from $p, p \rightarrow q$, and $p \land q \rightarrow r$

Two visuals of the same proof. We will use the top one, but if the bottom one helps you think about it, that's great!

1.	p	Given
2.	$oldsymbol{p} ightarrow oldsymbol{q}$	Given
3.	q	MP: 1, 2
4.	$p \wedge q$	Intro ∧: 1, 3
5.	$p \wedge q \rightarrow r$	Given
6.	r	MP: 4, 5

Important: Applications of Inference Rules

- You can use equivalences to make substitutions of any sub-formula.
- Inference rules only can be applied to whole formulas (not correct otherwise).

Does not follow! e.g. p=F, q=T, r=F

Proofs

Ginns

Prove that $\neg \mathbf{r}$ follows from $\mathbf{p} \wedge \mathbf{s}$, $\mathbf{q} \rightarrow \neg \mathbf{r}$, and $\neg \mathbf{s} \vee \mathbf{q}$.

- 1. $p \wedge s$ Given
- 2. $q \rightarrow \neg r$ Given
- 3. $\neg s \lor q$ Given

First: Write down givens and goal

20.

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

1.	$p \wedge s$	Given
2.	q ightarrow eg r	Given
3.	$\neg s \lor q$	Given

Idea: Work backwards!

We want to eventually get $\neg r$. How?

- We can use $q \rightarrow \neg r$ to get there.
- The justification between 2 and 20 looks like "elim →" which is MP.

MP: 2, ?

- 1. $p \land s$ Given
- 2. $q \rightarrow \neg r$ Given
- 3. $\neg s \lor q$ Given

Idea: Work backwards!

We want to eventually get $\neg r$. How?

- Now, we have a new "hole"
- We need to prove *q*...
 - Notice that at this point, if we prove *q*, we've proven ¬*r*...

- 1. $p \wedge s$ Given
- 2. $q \rightarrow \neg r$ Given
- 3. $\neg s \lor q$ Given

18. $\neg \neg S$ $\neg \neg S$ $\neg \neg S$ doesn't show up in the givens but
s does and we can use equivalences19. q \lor Elim: 3, 1820. $\neg r$ MP: 2, 19

- **1**. $p \wedge s$ Given
- 2. $q \rightarrow \neg r$ Given
- 3. $\neg s \lor q$ Given
- 17. s
- **18.** $\neg \neg s$ **Double Negation:17**
- 19. *q* V Elim: 3, 18
- 20. ¬*r* MP: 2, 19

1.	$p \wedge s$	Given	No holes left! We just
2.	q ightarrow eg r	Given	need to clean up a bit.
3.	$\neg s \lor q$	Given	
17.	S	∧ Elim: 1	
18.	¬¬ <i>\$</i>	Double Negation	: 17
19.	q	∨ Elim: 3, 18	
20.	$\neg r$	MP: 2, 19	

1.	$p \wedge s$	Given
2.	$oldsymbol{q} ightarrow eg r$	Given
3.	$\neg s \lor q$	Given
4.	<i>S</i>	∧ Elim: 1
5.	¬¬ <i>\$</i>	Double Negation: 4
6.	q	∨ Elim: 3, 5
7.	$\neg r$	MP: 2, 6

- We use the direct proof rule
- The "pre-requisite" $A \implies B$ for the direct proof rule is a proof that "Given A, we can prove B."
- The direct proof rule:

If you have such a proof then you can conclude that $A \rightarrow B$ is true

Example:	Prove $\mathbf{p} \rightarrow (\mathbf{p} \lor \mathbf{q})$.	proof subroutine
Indent proof	1. <i>p</i>	Assumption
subroutine 🥣	2. $\boldsymbol{p} \lor \boldsymbol{q}$	Intro ∨: 1
3.	$p \rightarrow (p \lor q)$	Direct Proof Rule

Show that $p \rightarrow r$ follows from q and $(p \land q) \rightarrow r$

1. qGiven2. $(p \land q) \rightarrow r$ GivenThis is a
proof
of $p \rightarrow r$ 3.1. pAssumption
Assumption
 $3.2. p \land q$ Intro $\land: 1, 3.1$
3.3. rIf we know p is true...
Then, we've shown
r is true3. $p \rightarrow r$ Direct Proof Rule

Example

Where do we start? We have no givens...

Prove: $(p \land q) \rightarrow (p \lor q)$ 1.1 $p \land q$ Assumption 1.2 p alim \land in 1.1 1.10 $p \lor q$ Intro \lor in 1.2 1 $(p \land q) \rightarrow (p \lor q)$ Direct Proof Rule. Prove: $(p \land q) \rightarrow (p \lor q)$

- 1.1. *p* ∧ *q*
- 1.2. *p*
- **1.3.** *p* ∨ *q*
- **1.** $(p \land q) \rightarrow (p \lor q)$

Assumption Elim ∧: 1.1 Intro ∨: 1.2 Direct Proof Rule

Prove: $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$ 1.1. $((p \rightarrow q) \land (q \rightarrow r))$ Assumption 1.2. $p \rightarrow q$ elin of $\land 1.1$ 1.3 $q \rightarrow r$ elin of $\land 1.1$ 1.20.1 P Assumption 1.2.0.2 9 MP of 1.2, 1.20.1 1.20.20 r MP 1.3 and 1.20.2 1.20. p->v DPR 1. $((P \rightarrow q) \land (q \rightarrow r)) \rightarrow (P \rightarrow r) DPR$

- Look at the rules for introducing connectives to see how you would build up the formula you want to prove from pieces of what is given
- 2. Use the rules for eliminating connectives to break down the given formulas so that you get the pieces you need to do 1.
- 3. Write the proof beginning with what you figured out for 2 followed by 1.