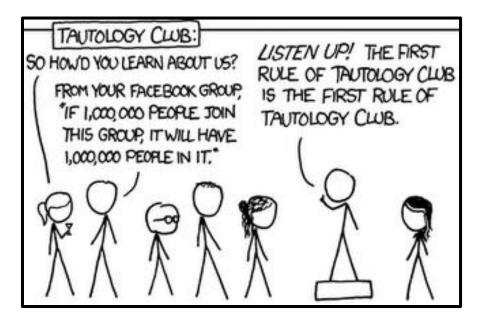
CSE 311: Foundations of Computing

Lecture 6: DNF, CNF and Predicate Logic

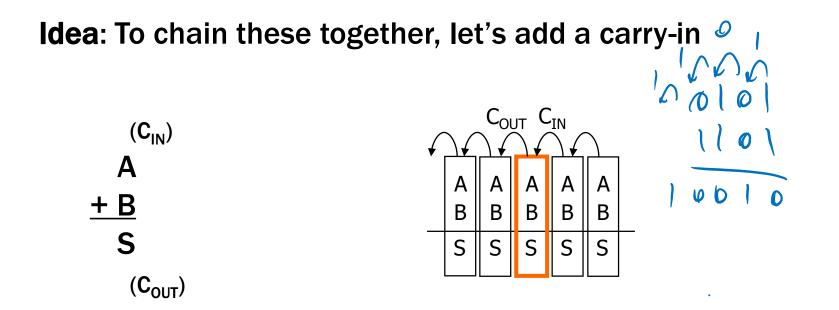


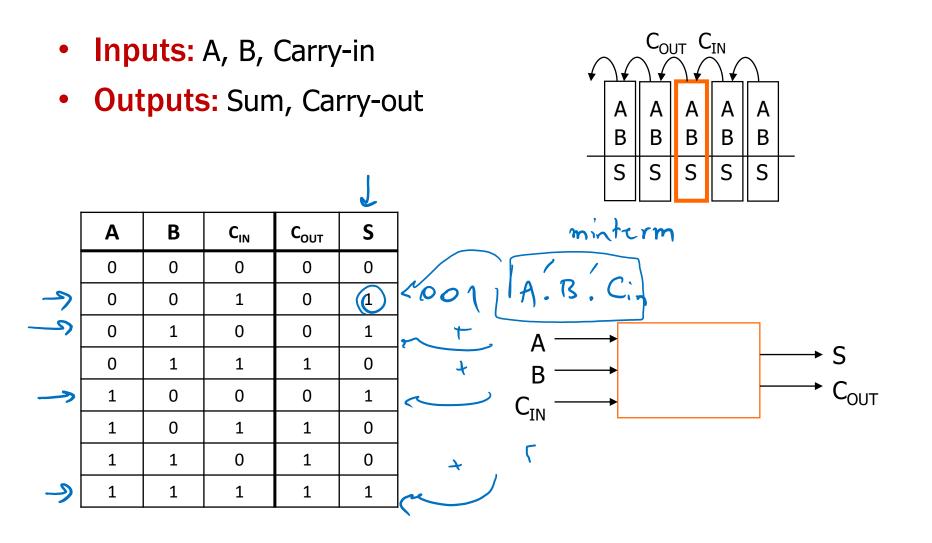
Α	$0 + 0 = 0$ (with $C_{OUT} = 0$)
<u>+ B</u>	$0 + 1 = 1$ (with $C_{OUT} = 0$)
1 1 c S A+B>2	$1 + 0 = 1$ (with $C_{OUT} = 0$)
$A_+B_{is} = (C_{OUT}) = 1$	1 + 1 = 0 (with C _{OUT} = 1)

Α	$0 + 0 = 0$ (with $C_{OUT} = 0$)
<u>+ B</u>	$0 + 1 = 1$ (with $C_{OUT} = 0$)
S	$1 + 0 = 1$ (with $C_{OUT} = 0$)
(C _{OUT})	$1 + 1 = 0$ (with $C_{OUT} = 1$)

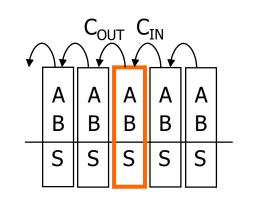
Idea: To chain these together, let's add a carry-in

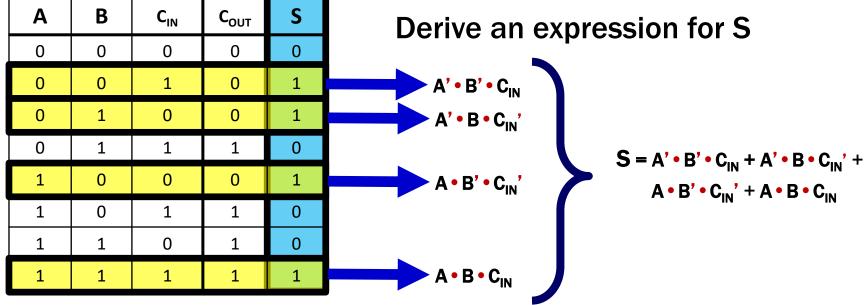
Α	$0 + 0 = 0$ (with $C_{OUT} = 0$)
<u>+ B</u>	$0 + 1 = 1$ (with $C_{OUT} = 0$)
S	$1 + 0 = 1$ (with $C_{OUT} = 0$)
(C _{OUT})	1 + 1 = 0 (with C _{OUT} = 1)



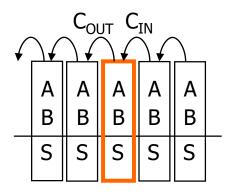


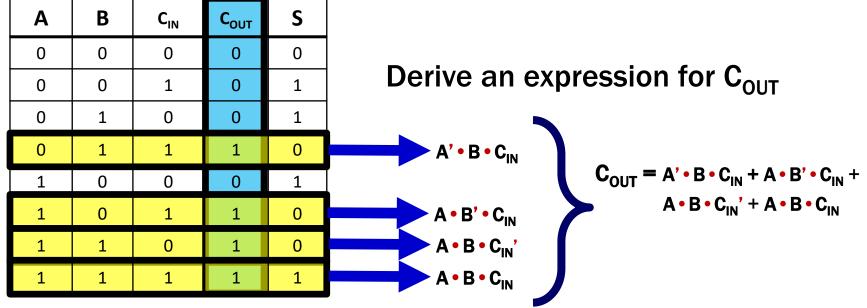
- Inputs: A, B, Carry-in
- Outputs: Sum, Carry-out





- Inputs: A, B, Carry-in
- Outputs: Sum, Carry-out





$$S = A' \bullet B' \bullet C_{IN} + A' \bullet B \bullet C_{IN}' + A \bullet B' \bullet C_{IN}' + A \bullet B \bullet C_{IN}$$

• Inputs: A, B, Carry-in

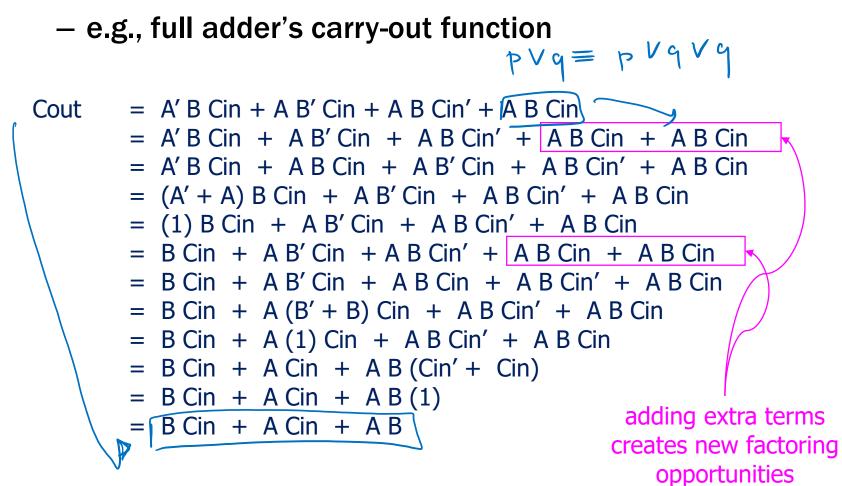
• Outputs: Sum, Carry-out

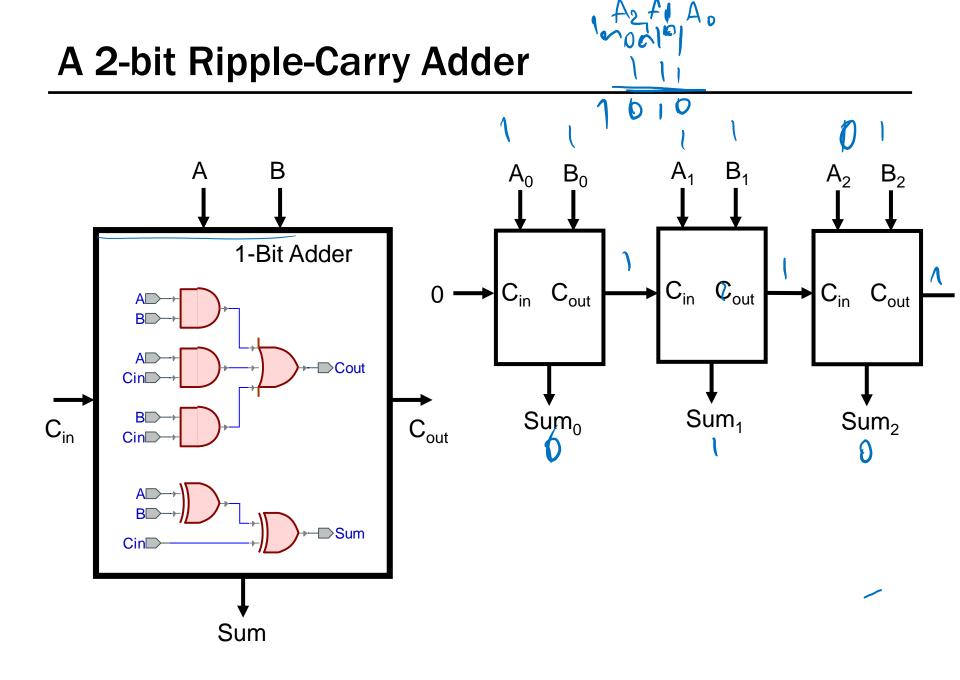
$\begin{array}{c} C_{OUT} \ C_{IN} \\ \frown \frown \frown \frown \frown \frown \end{array}$						
•	A		A		A	
	В	A B	В	A B	A B	
	S	S	S	S	S	

Α	В	C _{IN}	C _{OUT}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

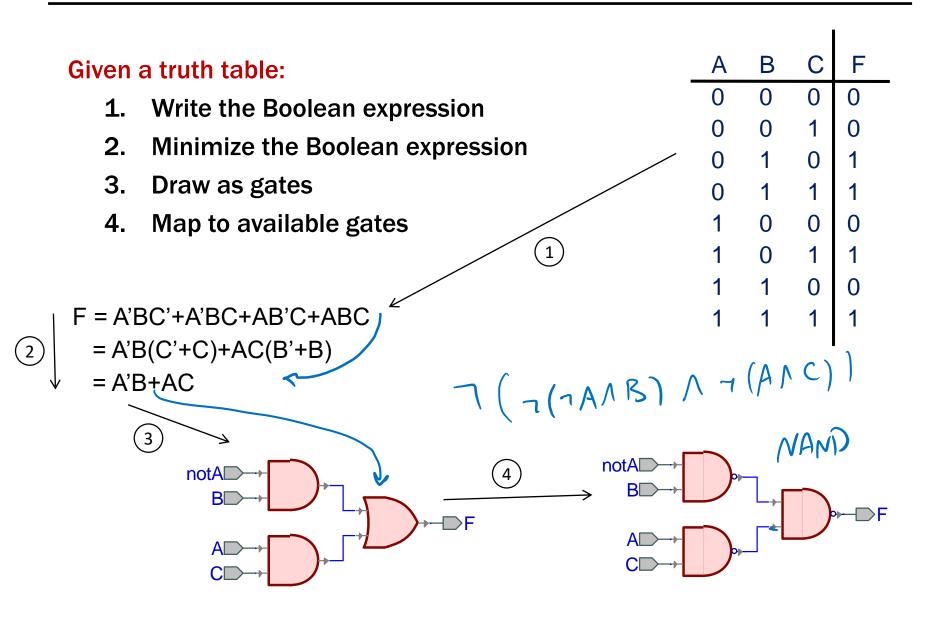
$$S = A' \bullet B' \bullet C_{IN} + A' \bullet B \bullet C_{IN}' + A \bullet B' \bullet C_{IN}' + A \bullet B \bullet C_{IN}$$
$$C_{OUT} = A' \bullet B \bullet C_{IN} + A \bullet B' \bullet C_{IN} + A \bullet B \bullet C_{IN}' + A \bullet B \bullet C_{IN}$$

The theorems of Boolean algebra can simplify expressions





Mapping Truth Tables to Logic Gates

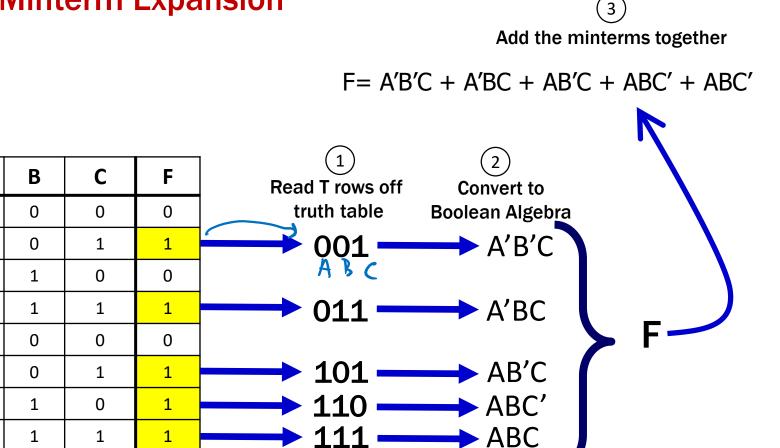


- Truth table is the unique signature of a Boolean Function
- The same truth table can have many gate realizations
 - We've seen this already
 - Depends on how good we are at Boolean simplification
- Canonical forms
 - Standard forms for a Boolean expression
 - We all come up with the same expression

Sum-of-Products Canonical Form

- AKA Disjunctive Normal Form (DNF)
- AKA Minterm Expansion

Α



Sum-of-Products Canonical Form

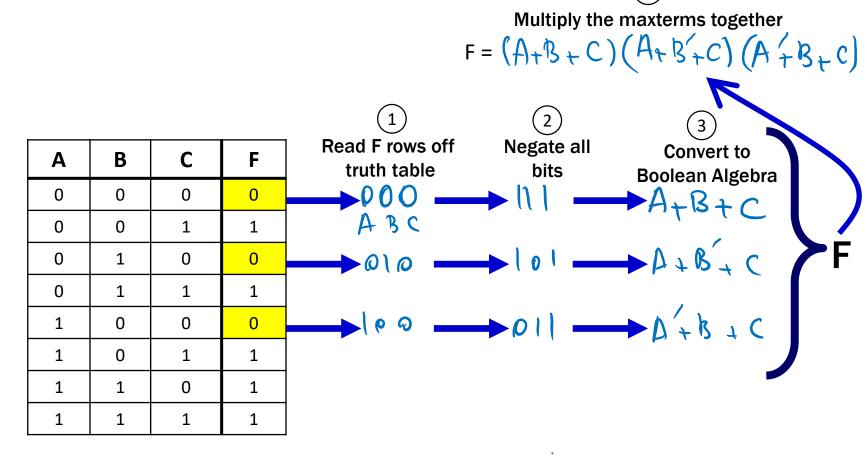
Product term (or minterm)

- ANDed product of literals input combination for which output is true
- each variable appears exactly once, true or inverted (but not both)

Α	В	С	minterms	
0	0	0	A'B'C'	F in canonical form:
0	0	1	A'B'C	F(A, B, C) = A'B'C + A'BC + AB'C + ABC' + ABC
0	1	0	A'BC'	ennemient former a minimal forme
0	1	1	A'BC	canonical form \neq minimal form
1	0	0	AB'C'	F(A, B, C) = A'B'C + A'BC + AB'C + ABC + ABC'
1	0	1	AB'C	= (A'B' + A'B + AB' + AB)C + ABC'
1	1	0	ABC'	= ((A' + A)(B' + B))C + ABC'
1	1	1	ABC	= C + ABC'
				= ABC' + C
				= AB + C

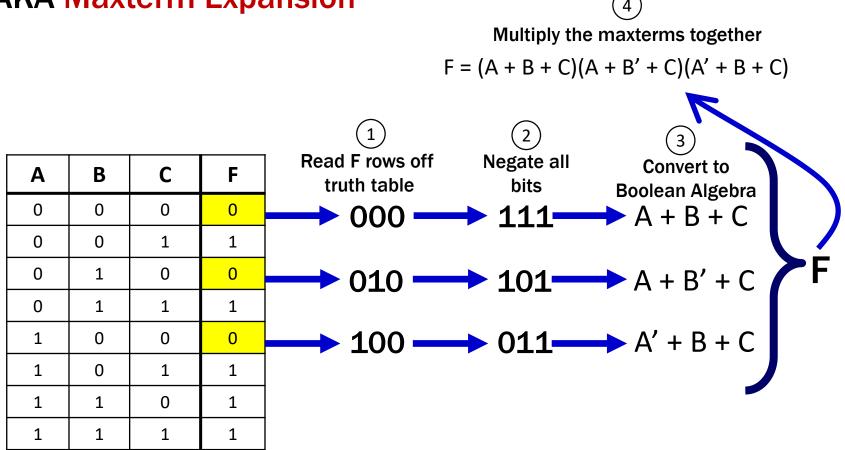
Product-of-Sums Canonical Form

- AKA Conjunctive Normal Form (CNF)
- AKA Maxterm Expansion



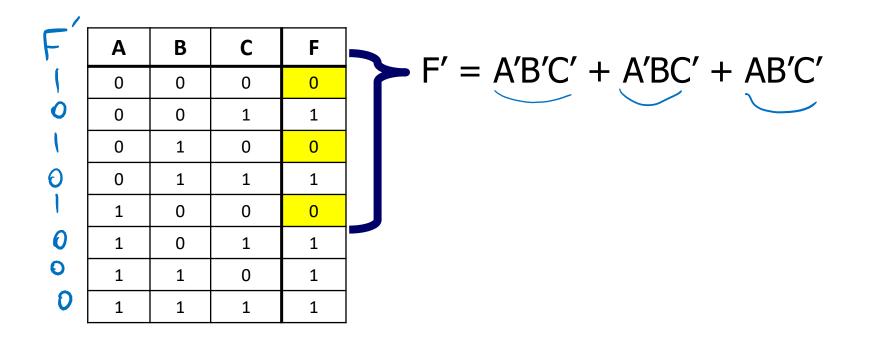
Product-of-Sums Canonical Form

- AKA Conjunctive Normal Form (CNF)
- AKA Maxterm Expansion



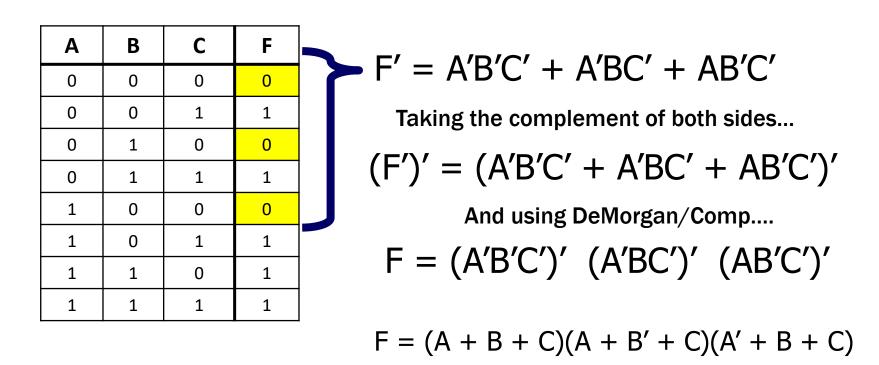
Useful Facts:

- We know (F')' = F
- We know how to get a **minterm** expansion for F'



Useful Facts:

- We know (F')' = F
- We know how to get a **minterm** expansion for F'



Product-of-Sums Canonical Form

Sum term (or maxterm)

- ORed sum of literals input combination for which output is false
- each variable appears exactly once, true or inverted (but not both)

Α	В	С	maxterms	F in canonical form:
0	0	0	A+B+C	F(A, B, C) = (A + B + C) (A + B' + C) (A' + B + C)
0	0	1	A+B+C'	
0	1	0	A+B'+C	canonical form ≠ minimal form
0	1	1	A+B'+C'	F(A, B, C) = (A + B + C) (A + B' + C) (A' + B + C)
1	0	0	A'+B+C	= (A + B + C) (A + B' + C)
1	0	1	A'+B+C'	(A + B + C) (A' + B + C)
1	1	0	A'+B'+C	= (A + C) (B + C)
1	1	1	A'+B'+C'	

Propositional Logic

"If you take the high road and I take the low road then I'll arrive in Scotland before you."

Predicate Logic

"All positive integers x, y, and z satisfy $x^3 + y^3 \neq z^3$."

- Propositional Logic
 - Allows us to analyze complex propositions in terms of their simpler constituent parts (a.k.a. atomic propositions) joined by connectives I phy backet ball in the morning.
- Predicate Logic

Adds two key notions to propositional logic

- Predicates
- Quantifiers

Predicate

A function that returns a truth value, e.g.,

Cat(x) ::= "x is a cat"
Prime(x) ::= "x is prime"
HasTaken(x, y) ::= "student x has taken course y"
LessThan(x, y) ::= "x < y"
Sum(x, y, z) ::= "x + y = z"
GreaterThan5(x) ::= "x > 5"
→ HasNChars(s, n) ::= "string s has length n"

Predicates can have varying numbers of arguments and input types.

For ease of use, we define one "type"/"domain" that we work over. This set of objects is called the "domain of discourse".

For each of the following, what might the domain be?

- (1) "x is a cat", "x barks", "x ruined my couch" Animals_ pets, dogs and cats
- (2) "x is prime", "x = 0", "x < 0", "x is a power of two" intyers, {π, 423, {13, vul, nyalin num
- (3) "student x has taken course y" "x is a pre-req for z"

Estudints, courses?

For ease of use, we define one "type"/"domain" that we work over. This set of objects is called the "domain of discourse".

For each of the following, what might the domain be?(1) "x is a cat", "x barks", "x ruined my couch"

"mammals" or "sentient beings" or "cats and dogs" or ...

(2) "x is prime", "x = 0", "x < 0", "x is a power of two"

"numbers" or "integers" or "integers greater than 5" or ...

(3) "student x has taken course y" "x is a pre-req for z"

"students and courses" or "university entities" or ...

We use *quantifiers* to talk about collections of objects.

 $\forall \mathbf{x} \mathbf{P}(\mathbf{x}) \cong \mathbf{P}(A_1) \land \mathbf{P}(A_2) \land \mathbf{P}(A_3) \land \cdots$

{A1, A2, A3, -- }

P(x) is true for every x in the domain read as "for all x, P of x"

$$\exists \mathbf{x} \mathbf{P}(\mathbf{x}) \equiv \mathsf{P}(A_1) \lor \mathsf{P}(A_2) \lor \mathsf{P}(A_3) \lor \mathsf{P}(A_3$$

There is an x in the domain for which P(x) is true read as "there exists x, P of x"

We use *quantifiers* to talk about collections of objects. Universal Quantifier ("for all"): ∀x P(x) P(x) is true for every x in the domain read as "for all x, P of x"

Examples: Are these true? $\{73 \ (AM \text{ prime but 2})\}$ $\cdot \forall x \text{ Odd}(x)$ $\{AM \text{ odd numbers}\}$ $\cdot \forall x \text{ LessThan5}(x)$ $AM \text{ numbers} \leq 5 \leq 52$

We use *quantifiers* to talk about collections of objects. Universal Quantifier ("for all"): $\forall x P(x)$ P(x) is true for every x in the domain read as "for all x, P of x"

Examples: Are these true? It depends on the domain. For example:

- $\forall x \text{ Odd}(x)$
- $\forall x \text{ LessThan4}(x)$

{1, 3, -1, -27}	Integers	Odd Integers
True	False	True
True	False	False

We use *quantifiers* to talk about collections of objects. Existential Quantifier ("exists"): $\exists x P(x)$ There is an x in the domain for which P(x) is true read as "there exists x, P of x"

Examples: Are these true?

- ∃x Odd(x)
 {1,2, -, 10 }, integers
- $\exists x \text{ LessThan5}(x)$

We use *quantifiers* to talk about collections of objects. **Existential Quantifier ("exists"):** $\exists x P(x)$ **There is** an x in the domain for which P(x) is true read as "there exists x, P of x"

Examples: Are these true? It depends on the domain. For example:

• $\exists x \text{ Odd}(x)$

• $\exists x \text{ LessThan4}(x)$

{1, 3, -1, -27}	Integers	Positive Multiples of 5
True	True	True
True	True	False

Just like with propositional logic, we need to define variables (this time **predicates**) before we do anything else. We must also now define a **domain of discourse** before doing anything else.

Predicate Definitions	Pred	licate	Defin	itions
------------------------------	------	--------	-------	--------

Domain of Discourse Positive Integers Even(x) ::= "x is even"Greater(x, y) ::= "x > y"Odd(x) ::= "x is odd"Equal(x, y) ::= "x = y"Prime(x) ::= "x is prime"Sum(x, y, z) ::= "x + y = z"

Domain of Discourse Positive Integers

Predicate Definitions	
Even(x) ::= "x is even"	Greater(x, y) ::= "x > y"
Odd(x) ::= "x is odd"	Equal(x, y) ::= " $x = y$ "
Prime(x) ::= "x is prime"	Sum(x, y, z) ::= "x + y = z"

Determine the truth values of each of these statements:

Dradicata Dafinitions

2 ∃x Even(x) $\forall x (Even(x) \lor Odd(x)) \land$ $\exists x (Even(x) \land Odd(x)) \vdash$ $\forall x \text{ Greater}(x+1, x)$ $\exists x (Even(x) \land Prime(x)) \top 2$

Domain of	Discourse
Positive	Integers

 $\forall x \text{ Greater}(x+1, x)$

Even(x) ::= "x is even"	Greater(x, y) ::= " $x > y$ "
Odd(x) ::= "x is odd"	Equal(x, y) ::= "x = y"
Prime(x) ::= "x is prime"	Sum(x, y, z) ::= "x + y = z"

Determine the truth values of each of these statements:

∃x Even(x)	Т	e.g. 2, 4, 6,
∀x Odd(x)	F	e.g. 2, 4, 6,
$\forall x (Even(x) \lor Odd(x))$	т	every integer is either even or odd
$\exists x (Even(x) \land Odd(x))$	F	no integer is both even and odd

Τ

- - no integer is both even and odd
 - adding 1 makes a bigger number
- $\exists x (Even(x) \land Prime(x)) \top$ Even(2) is true and Prime(2) is true

Domain of Discourse Positive Integers Predicate DefinitionsEven(x) ::= "x is even"Greater(x, y) ::= "x > y"Odd(x) ::= "x is odd"Equal(x, y) ::= "x = y"Prime(x) ::= "x is prime"Sum(x, y, z) ::= "x + y = z"

Translate the following statements to English

∀x ∃y Greater(y, x)

∀x ∃y Greater(x, y)

 $\forall x \exists y (Greater(y, x) \land Prime(y))$

```
\forall x (Prime(x) \rightarrow (Equal(x, 2) \lor Odd(x)))
```

 $\exists x \exists y (Sum(x, 2, y) \land Prime(x) \land Prime(y))$

Statements with Quantifiers (Literal Translations)

Domain of Discourse Positive Integers

Predicate Definitions	
Even(x) ::= "x is even"	Greater(x, y) ::= "x > y"
Odd(x) ::= "x is odd"	Equal(x, y) ::= "x = y"

Prime(x) ::= "x is prime" Sum(x, y, z) ::= "x + y = z"

Translate the following statements to English

∀x ∃y Greater(y, x)

For every positive integer x, there is a positive integer y, such that y > x.

∀x ∃y Greater(x, y)

For every positive integer x, there is a positive integer y, such that x > y.

 $\forall x \exists y (Greater(y, x) \land Prime(y))$

For every positive integer x, there is a pos. int. y such that y > x and y is prime.

 $\forall x (Prime(x) \rightarrow (Equal(x, 2) \lor Odd(x)))$

For each positive integer x, if x is prime, then x = 2 or x is odd.

 $\exists x \exists y (Sum(x, 2, y) \land Prime(x) \land Prime(y))$

There exist positive integers x and y such that x + 2 = y and x and y are prime.

Statements with Quantifiers (Natural Translations)

Predicate Definitions

Domain of Discourse Positive Integers

Even(x) ::= "x is even"	Greater(x, y) ::= "x > y"
Odd(x) ::= "x is odd"	Equal(x, y) ::= "x = y"
Prime(x) ::= "x is prime"	Sum(x, y, z) ::= "x + y = z"

Translate the following statements to English

∀x ∃y Greater(y, x)

There is no greatest positive integer.

∀x ∃y Greater(x, y)

There is no least positive integer.

 $\forall x \exists y (Greater(y, x) \land Prime(y))$

For every positive integer there is a larger number that is prime.

 $\forall x (Prime(x) \rightarrow (Equal(x, 2) \lor Odd(x)))$

Every prime number is either 2 or odd.

 $\exists x \exists y (Sum(x, 2, y) \land Prime(x) \land Prime(y))$

There exist prime numbers that differ by two."

English to Predicate Logic

Domain of Discourse Mammals **Predicate Definitions**

Cat(x) ::= "x is a cat" Red(x) ::= "x is red" LikesTofu(x) ::= "x likes tofu"

"Red cats like tofu"

"Some red cats don't like tofu"

English to Predicate Logic

Domain of Discourse Mammals Predicate Definitions

Cat(x) ::= "x is a cat" Red(x) ::= "x is red" LikesTofu(x) ::= "x likes tofu"

"Red cats like tofu"

 $\forall x ((\text{Red}(x) \land \text{Cat}(x)) \rightarrow \text{LikesTofu}(x))$

"Some red cats don't like tofu"

 $\exists y ((\text{Red}(y) \land \text{Cat}(y)) \land \neg \text{LikesTofu}(y))$

English to Predicate Logic

Domain of Discourse Mammals Predicate Definitions Cat(x) ::= "x is a cat"

Red(x) ::= "x is red"

LikesTofu(x) ::= "x likes tofu"

When putting two predicates together like this, we use an "and".

"Red cats like tofu"

When restricting to a smaller domain in a "for all" we use **implication**.

When there's no leading quantification, it means "for all".

"Some red cats don't like tofu"
When restricting to a smaller domain in an "exists" we use and.

"Some" means "there exists".

Negations of Quantifiers

Predicate Definitions

PurpleFruit(x) ::= "x is a purple fruit"

(*) $\forall x PurpleFruit(x)$ ("All fruits are purple")

What is the negation of (*)?

- (a) "there exists a purple fruit"
- (b) "there exists a non-purple fruit"
- (c) "all fruits are not purple"

Try your intuition! Which one "feels" right?

Key Idea: In every domain, exactly one of a statement and its negation should be true.

Negations of Quantifiers

Predicate Definitions

PurpleFruit(x) ::= "x is a purple fruit"

(*) $\forall x PurpleFruit(x)$ ("All fruits are purple")

What is the negation of (*)?

- (a) "there exists a purple fruit"
- (b) "there exists a non-purple fruit"
- (c) "all fruits are not purple"

Key Idea: In every domain, exactly one of a statement and its negation should be true.

Domain of Discourse {plum, apple}

The only choice that ensures exactly one of the statement and its negation is (b).

{apple}

De Morgan's Laws for Quantifiers

$$\neg \forall x P(x) \equiv \exists x \neg P(x) \\ \neg \exists x P(x) \equiv \forall x \neg P(x)$$

De Morgan's Laws for Quantifiers

$$\neg \forall x P(x) \equiv \exists x \neg P(x) \\ \neg \exists x P(x) \equiv \forall x \neg P(x)$$

"There is no largest integer"

$$\neg \exists x \forall y (x \ge y)$$

$$\equiv \forall x \neg \forall y (x \ge y)$$

$$\equiv \forall x \exists y \neg (x \ge y)$$

$$\equiv \forall x \exists y (x < y)$$

"For every integer there is a larger integer"

 $\exists x \ (P(x) \land Q(x)) \qquad \forall S. \qquad \exists x \ P(x) \land \exists x \ Q(x)$

 $\exists x \ (P(x) \land Q(x)) \qquad \forall S. \qquad \exists x \ P(x) \land \exists x \ Q(x)$

This one asserts P and Q of the same x.

This one asserts P and Q of potentially different x's.

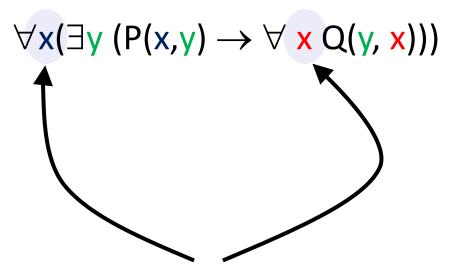
```
Example: NotLargest(x) \equiv \exists y Greater (y, x)
\equiv \exists z Greater (z, x)
```

truth value:

doesn't depend on y or z "bound variables" does depend on x "free variable"

quantifiers only act on free variables of the formula they quantify

 $\forall \mathbf{x} (\exists \mathbf{y} (\mathsf{P}(\mathbf{x},\mathbf{y}) \rightarrow \forall \mathbf{x} \mathsf{Q}(\mathbf{y},\mathbf{x})))$



This isn't "wrong", it's just horrible style. Don't confuse your reader by using the same variable multiple times...there are a lot of letters...