CSE 311: Foundations of Computing

Lecture 6: DNF, CNF and Predicate Logic

e ——
TAUTOLOGY CLUB.

SO HOWD YOU LEARN AROUT
RU-EOF‘PUWCMB
mmmm IS THE FIRST RULE OF
THISGW mwWiLL HAVE
lwmmm I

f7 88 4

1-bit Binary Adder

W >

0|

(Cour)

0 + 0 = O (with Coyy = 0)
0 + 1 = 1 (with Cyy; = O)
1 + 0 = 1 (with Cyy; = O)

1+1 =0 (with Cour = 1)

1-bit Binary Adder

A 0 + 0 = O (with Coyr = 0)
+B 0 + 1 = 1 (with Cyy; = O)
S 1 + 0 = 1 (with Cyy; = O)

(Cour) 1+ 1=0(withCyy;=1)

Idea: To chain these together, let’s add a carry-in

1-bit Binary Adder

A 0 + 0 =0 (with C, ; = 0)
+B 0+ 1 =1 (with C,,; = 0)
S 1+ 0 =1 (with Cyy; =0)
(Cour) 1+ 1=0(withCyy;=1)

Idea: To chain these together, let’s add a carry-in

2R

’ COUTCIN ¢\
o aVaVaVa Vel 4ot
allallallalla \ 10
+ B BlB(BI|B|B _
S slsiislislis|” '©0016

(Cour)

1-bit Binary Adder

* |nputs: A, B, Carry-in
e Outputs: Sum, Carry-out

A B Cin Cour S

0 0 0 0 0
[0 T T | o 1

0 1 0 0 1 ¢

0 1 1 1 0

1 0 0 0 1 ¢

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1 |&

—»
COUT

1-bit Binary Adder

* Inputs: A, B, Carry-in Cour Cin
e Outputs: Sum, Carry-out

Derive an expression for S

A *B°Cy

S=A*B'*Cy+A *B°C, +
A*B’*C,/’+A*B*C),

A*B'*C,’

Mideym
°Be CIN

1-bit Binary Adder

* Inputs: A, B, Carry-in f\/\c?{;l\N/\

e Qutputs: Sum, Carry-out all allallall a
B|B|B|B]|B
sis|Is|ls|s

A B (o S
0 0 0 0
0o | o 1) Derive an expression for Cg 1
0 1 0 1
. 1 0 A’ *B*Cy
COUT=A’°B°CIN+A°B’°C|N+

A°*B’ *C,, A*B-Cy' +A*B-Cy

A*B-Cy
A<B*C,

S=A"*B*Cy+A*B°Cy +A*B'°Cy'+A*B-Cy

1-bit Binary Adder

* Inputs: A, B, Carry-in A [\COUT Cin
° OUtpUtS: Sum, Carry-out AlAMAITAIA
B{B|BiB|B
SIISIS|S|S
A B C|N cOUT S
0 0 0 0 0
0 0 1 0 1
z 1 ‘i (1’ ; S=A"*BCy+A *B*Cy +A*B *Cy +A*B*C,
1 0 0 0 1 | Cour=A"*B°Cy+AB'*Cy+A*B-Cy' +A°B-Cy
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Apply Theorems to Simplify Expressions

The theorems of Boolean algebra can simplify expressions

— e.g., full adder’s carry-out function

Cout

TVq E?\/o(VO]

A'B Cin + AB’Cin + ABCin"+ A B Cin

ABCin + AB'Cin + ABCin’ +[/ABCin +|ABCin |

ANBCin + ABCin + AB'Cin + ABCin’ + ABCin
(N +A)BCin + AB'Cin + ABCin’ + ABCin
(1)BCin + AB'Cin + ABCin” + ABCin

BCin + AB'Cin +ABCin” +ABCin + ABCin

BCin + AB'Cin + ABCin + ABCin” + ABCin

BCin + A(B+B)Cin + ABCin" + ABCin

BCin + A(1)Cin + ABCin” + ABCin

BCin + ACin + AB(Cin"+ Cin)

BCin + ACin + AB(1) _

WB’CTn r AGH +m adding extra terms
creates new factoring

opportunities

A 2-bit Ripple-Carry Adder

1-Bit Adder

)]

) Droem
s

Mapping Truth Tables to Logic Gates

Given a truth table:
1. Write the Boolean expression
2. Minimize the Boolean expression
3. Draw as gates
4. Map to available gates

F = ABC'+ABC+AB'C+ABC
= AB(C'+C)+AC(B'+B)
= AB+AC

O

NOtALD—

®

B[O—

AD—r} ;

CD—A

NOtALD—+
BLO—

P PP P OOOO|>

P P OOPRFRPPEF OO

R OPFR, OFr OFr Ol
P O kP O Rk Bk O Ol

T

Sle

CO—

Canonical Forms

* Truth table is the unique sighature of a Boolean
Function

 The same truth table can have many gate realizations
— We've seen this already
— Depends on how good we are at Boolean simplification

* Canonical forms
— Standard forms for a Boolean expression
— We all come up with the same expression

Sum-of-Products Canonical Form

 AKA Disjunctive Normal Form (DNF)

* AKA Minterm Expansion

Add the minterms together
/\/\
F= A'B'C(+) ABC + AB'C + ABC' + ABC'

Read T rows off Convert to
truth table Boolean Algebra

Rlol M

—=—100 >

o

> pLL——> AeC

> | 1 0]\ s AB'C

64

ey 110 e ABC’

Rrlr|[r,r|,r|lo|lo|lo|o] D>

Rr|lr|lO|lO|FRP|IRP|O|lOI

R |lOoO|lRr|lO|lR|O|lRLr]|O1 O

R|lRr|Rr|O|R

e 1]] mep ABC

Sum-of-Products Canonical Form

Product term (or minterm)
— ANDed product of literals - input combination for which output is true
— each variable appears exactly once, true or inverted (but not both)

A B C | minterms _ _
0 0 0 |ABC F in canonical form:
0 0 1| aBc F(A, B, C) =W AB'C + ABC’ +E\
0 1 0 |ABC e
0 1 1 | aBC canonical form = minimal form
1 0 o0 |ABC F(A, B,C) = ABC+ ABC + AB'C + ABC + ABC'
1 0o 1 |aBc = (AB' + AB + AB’ + AB)C + ABC’
1 1 0 | ABC = ((A" + A)(B’ + B))C + ABC’
1 1 1 |ABC =C+ ABC
= ABC' + C

= AB + C

Product-of-Sums Canonical Form

 AKA Conjunctive Normal Form (CNF)
« AKA Maxterm Expansion @

Multiply the maxterms together

F =
Read F rows off Negate all Concjzrt to
truth table bits N Boolean Algebra
e () 00 mp | [| ey Ay R4 C

Aec
ep 0)© e | 0] g A5 C F

e | () (0 e () | | —»1‘\/+@+C

Rrlr|[r,r|,r|lo|lo|lo|o] D>

R |lOoO|lRr|lO|lR|O|lRLr]|O1 O

Rr|lr|lO|lO|FRP|IRP|O|lOI
RrlRr|RP|O|lR|O|FR,]|O] =M

Product-of-Sums Canonical Form

 AKA Conjunctive Normal Form (CNF)
« AKA Maxterm Expansion @

Multiply the maxterms together
F=(A+B+C)(A+B +C)(A’+B+ ()

® @ ®

Read F rows off Negate all Convert to
truth table bits Boolean Algebra

p—p 000 = 11]=——=p A+B+C

— 010 = 101=—>A+B' +C £ F

100 =—p 011l=—p A’ +B +C
-~
woax 1 m

Rrlr|[r,r|,r|lo|lo|lo|o] D>

R |lOoO|lRr|lO|lR|O|lRLr]|O1 O

Rr|lr|lO|lO|FRP|IRP|O|lOI
RrlRr|RP|O|lR|O|FR,]|O] =M

Product-of-Sums: Why does this procedure work?

Useful Facts:
« We know|(F') =F
* We know how to get a minterm expansion for F’

F'\= AB'C' + ABC' + AB'C’

Rlr|lRr|r|lo|lo|lo|lo]| P
Rr|lr|lO|lO|FRP|IRP|O|lOI
R |lO|lR,r|lO|lR,|O]|lR,|O]IO
R l|lRr|lRr|O|lR|O|R,]|]O]=mM

Product-of-Sums: Why does this procedure work?

Useful Facts:
* We know (F')=F
* We know how to get a minterm expansion for F’

F'=AB'C'+ ABC' + AB'CU
Taking the complement of both sides...
(F) = (AB'C’ + ABC' + AB'CY

T; And using DeMorgan/Comp....

F — (AIBICI)I (AIBCI)I (ABICI)I

Rrlr|[r,r|,r|lo|lo|lo|o] D>
Rr|lr|lO|lO|FRP|IRP|O|lOI

R |lOoO|lRr|lO|lR|O|lRLr]|O1 O

Rl |r|lOo|lRr|lO|lRr]|]O] =™

F=(A+B+COA+B +C)(A"+B+ ()

Product-of-Sums Canonical Form

Sum term (or maxterm)

— ORed sum of literals - input combination for which output is false
— each variable appears exactly once, true or inverted (but not both)

A B C | maxterms
0O 0 0 |A+B+C

0O 0 1 |A+B+C

0O 1 0 |A+B+C

0 1 1 | A+B'+C
1 0 0 |A+B+C

1 0 1 |A+B+C

1 1 0 |A+B+C

1 1 1

A+B'+C

F in canonical form:
F(A,B,C) =(A+B+C)(A+B'"+C)(A+B+C)

canonical form = minimal form
F(A,B,C) =(A+B+C)(A+B'"+C)(A+B+0C)
=(A+B+C)(A+B + (O
(A+B+C)(A+B+C)
=(A+C)(B+C)

Predicate Logic

* Propositional Logic

“If you take the high road and | take the low road then I'll
arrive in Scotland before you.”

* Predicate Logic
‘@positive integers x, y, and z satisfy x> + y? # z3.”

Predicate Logic

* Propositional Logic

— Allows us to analyze complex propositions in
terms of their simpler constituent parts (a.k.a.
atomic propositions) joined by connectives

1 P,(J Jpas,(JLJ/(™ -l-l'n Mmoo -

* Predicate Logic

— Lets us analyze them at a deeper level by
expressing how those propositions depend on
the objects they are talking about

G IC "’LL/M ™~ Uu ety
1 Pffj b L:é L J(cjs _ﬂ:ac ,.,..AL,

Predicate Logic

Adds two key notions to propositional logic
— Predicates

— Quantifiers

I')

QUANTIFIEE

Predicates

Predicate
— A function that returns a truth value, e.g.,

Cat(x) ::= “xis a cat” &«

Prime(x) ::= “x is prime” &

HasTaken(x, y) ::= “student x has taken course y” ¢
LessThan(x, y) ::= “x<vy”

Sum(x,y, z) = “x+y=2"

GreaterThan5(x) ::= “x > 5”

HasNChars(s, n) ::= “string s has length n” ¢

Predicates can have varying numbers of arguments
and input types.

mn of Discours:(

—

For ease of use, we define one “type”/“domain” that we
work over. This set of objects is called the “domain of

discourse”.

For each of the following, what might the domain be?
(1) “x is a cat”, “x barks”, “x ruined my couch”

arieds, 125, Sabs ed dagsg

(2) “x is prime”, “x =07, “x < 07, “x is a power of two”
.',\‘]facvs/ N b) vlhy

(3) “student x has taken course y” “x is a pre-req for z”
W NN, (SJ'\A,JML c\u} ‘OIAWB

Domain of Discourse

For ease of use, we define one “type”/“domain” that we
work over. This set of objects is called the “domain of

discourse”.

For each of the following, what might the domain be?

(1) “x is a cat”, “x barks”, “x ruined my couch”
“mammals” or “sentient beings” or “cats and dogs” or ...

(2) “x is prime”, “x=0", “x < 07, “x is a power of two”
“numbers” or “integers” or “integers greater than 5” or ...

(3) “student x has taken course y” “x is a pre-req for 7’

7

“students and courses” or “university entities” or ...

Quantifiers

We use quantifiers to talk about collections of objects.

@jel&b& iA‘;Al)A'S’ 'IS
IXPX) h(a) A PADAPAIA - - 1@
P(x) is true for every x in the domain QUANTIFIEE)
read asw
. v P v
IxP(x) = \v(p')vf’(%\z) P(A) V..

There is an x in the domain for which P(x) is true
read as “there exists x, P of x”

Quantifiers

We use quantifiers to talk about collections of objects.

Universal Quantifier (“for all”): Vx P(x)

P(x) is true for every x in the domain
read as “for all x, P of x”

Examples: Arethese true?

* VX Odd(x)

O db iaw bess
Oyl o= ket 20
e VX essThanS(x)
AM n h‘h“\—/ /éli—wwl’w <5

{0y {H5)

Quantifiers

We use quantifiers to talk about collections of objects.

Universal Quantifier (“for all”): Vx P(x)

P(x) is true for every x in the domain
read as “for all x, P of x”

Examp|es; Are these true? It depends on the domain. For example:

{1, 3,-1,-27} Integers Odd Integers

¢ Vx 0dd(x)

True False True

* Vx LessThan4(x) True False False

Quantifiers

We use quantifiers to talk about collections of objects.

Existential Quantifier (“exists”): dx P(x)
There is an x in the domain for which P(x) is true
read as “there exists x, P of x”

Examples: Arethese true?

. 3x Odd(x)
AJ} M/(hws)vf\, AM VW\\VL*")

* dx LessThan5(x)

Quantifiers

We use quantifiers to talk about collections of objects.

Existential Quantifier (“exists”): dx P(x)
There is an x in the domain for which P(x) is true
read as “there exists x, P of x”

Examp|es; Are these true? It depends on the domain. For example:

Positive
{1,3,-1,-27} Integers Multiples of 5
e dx Odd(x)
True True True S

* dx LessThan4(x) True True False

Statements with Quantifiers

Just like with propositional logic, we need to define variables (this
time predicates) before we do anything else. We must also now
define a domain of discourse before doing anything else.

Predicate Definitions

Domain of Discourse Even(x) ::= “xis even” Greater(x, y) ::= “x>y”

| Positive Integers Odd(x) ::= “x is odd” Equal(x, y) ::= “x=y”
\Prime(x) ::= “xis prime” Sum(x, y, z) ::= “x+y=2"

Statements with Quantifiers

Predicate Definitions

Domain of Discourse Even(x) ::= “xis even” Greater(x, y) ::= “x>vy”

| Positive Integers Odd(x) ::= “x is odd” Equal(x, y) ::= “x = y”
\Prime(x) ::= “xis prime” Sum(x, y, z) ::= “x+y=2"

Determine the truth values of each of these statements:
dx Even(x) /T 2

vxoddx) F 4

Vx (Even(x) v Odd(x)) T

dx (Even(x) A Odd(x)) ﬁ 2

Vx Greater(x+1, x) Al

Ix (Even(x) A Prime(x)) T

Statements with Quantifiers

Predicate Definitions

Domain of Discourse Even(x) ::= “x is even” Greater(x, y) ::= “x>vy”

| Positive Integers Odd(x) ::= “x is odd” Equal(x, y) ::= “x = y”
\Prime(x) ::= “xis prime” Sum(x, y, z) ::= “x+y=2"

Determine the truth values of each of these statements:

dx Even(x) T eg24606,..

Vx Odd(x) F eg.246,..

Vx (Even(x) v Odd(x)) T everyinteger is either even or odd
dx (Even(x) A Odd(x)) F nointeger is both even and odd
Vx Greater(x+1, x) T adding 1 makes a bigger number

dx (Even(x) A Prime(x)) T Even(2) is true and Prime(2) is true

Statements with Quantifiers

Predicate Definitions

Domain of Discourse Even(x) ::= “xis even” Greater(x, y) ::= “x>vy”

| Positive Integers Odd(x) ::= “x is odd” Equal(x, y) ::= “x = y”
\Prime(x) ::= “xis prime” Sum(x, y, z) ::= “x+y=2"

Translate the following statements to English

Vx 3y Greater(y, x)

Vx 3y Greater(x, y)

Vx 3y (Greater(y, x) A Prime(y))

Vx (Prime(x) — (Equal(x, 2) v Odd(x)))

dx Ay (Sum(x, 2, y) A Prime(x) A Prime(y))

Statements with Quantifiers (Literal Translations)

Predicate Definitions

Domain of Discourse Even(x) ::= “x is even” Greater(x, y) ::= “x>vy”

| Positive Integers Odd(x) ::= “x is odd” Equal(x, y) ::= “x = y”
\Prime(x) ::= “xis prime” Sum(x, y, z) ::= “x+y=2"

Translate the following statements to English

Vx 3y Greater(y, x)
For every positive integer X, there is a positive integer y, such thaty > x.
Vx dy Greater(x, y)
For every positive integer X, there is a positive integer y, such that x > y.
Vx 3y (Greater(y, x) A Prime(y))
For every positive integer X, there is a pos. int. y such thaty > x and y is prime.
Vx (Prime(x) — (Equal(x, 2) v Odd(x)))
For each positive integer x, if x is prime, then x = 2 or x is odd.
dx Ay (Sum(x, 2, y) A Prime(x) A Prime(y))

There exist positive integers x and y such that x + 2 =y and x and y are prime.

Statements with Quantifiers (Natural Translations)

Predicate Definitions

Domain of Discourse Even(x) ::= “x is even” Greater(x, y) ::= “x>vy”

| Positive Integers Odd(x) ::= “x is odd” Equal(x, y) ::= “x = y”
\Prime(x) ::= “xis prime” Sum(x, y, z) ::= “x+y=2"

Translate the following statements to English

Vx 3y Greater(y, x)
There is no greatest positive integer.
Vx 3y Greater(x, y)
There is no least positive integer.
Vx 3y (Greater(y, x) A Prime(y))
For every positive integer there is a larger number that is prime.

Vx (Prime(x) — (Equal(x, 2) v Odd(x)))

Every prime number is either 2 or odd.

dx Ay (Sum(x, 2, y) A Prime(x) A Prime(y))

There exist prime numbers that differ by two.”

English to Predicate Logic

Predicate Definitions
Domain of Discourse Cat(x) ::= “x is a cat”

Mammals | Red(x) ::= “x is red”
\LikesTofu(x) ::= “x likes tofu”)

“Red cats like tofu”

“Some red cats don’t like tofu”

English to Predicate Logic

Predicate Definitions
Domain of Discourse Cat(x) ::= “xis a cat”

Mammals | Red(x) ::= “x is red”
\LikesTofu(x) ::= “x likes tofu”)

“Red cats like tofu”

VX ((Red(x) A Cat(x)) — LikesTofu(x))

“Some red cats don’t like tofu”

Jy ((Red(y) A Cat(y)) A —LikesTofu(y))

English to Predicate Logic

Predicate Definitions
Domain of Discourse Cat(x) ::= “xis a cat”

Mammals) Red(x) ::= “x is red”
\LikesTofu(x) ::= “x likes tofu”)

—

When putting two predicates together like this, we
‘ use an “and”.

When restricting to a smaller
domain in a “for all” we use

“Red cats like tofu” «

implication.
When there’s no leading
quantification, it means “for all”.
—4 When restricting to a smaller
“Some red cats don’t like tofu” €— domain in an “exists” we use
and.

“Some” means “there exists”.

Negations of Quantifiers

Predicate Definitions
| PurpleFruit(x) ::= “xis a purple fruit” |

(*) Vx PurpleFruit(x) (“All fruits are purple”)

What is the negation of (*)?
(a) “there exists a purple fruit”
(b) “there exists a non-purple fruit”
(c) “all fruits are not purple”

Try your intuition! Which one “feels” right?

Key Idea: In every domain, exactly one of a
statement and its negation should be true.

Negations of Quantifiers

Predicate Definitions
| PurpleFruit(x) ::= “xis a purple fruit” |

(*) Vx PurpleFruit(x) (“All fruits are purple”)

What is the negation of (*)?
(a) “there exists a purple fruit”
(b) “there exists a non-purple fruit”
(c) “all fruits are not purple”

Key lIdea: In every domain, exactly one of a
statement and its negation should be true.

Domain of Discourse Domain of Discourse Domain of Discourse
{plum} | {apple} | {plum, apple}

The only choice that ensures exactly one of the statement and its negation is (b).

De Morgan’s Laws for Quantifiers

—Vx P(x) = 3x — P(x)
— dx P(x) = Vx — P(x)

De Morgan’s Laws for Quantifiers

—Vx P(x) = 3x — P(x)
— dx P(x) = Vx — P(x)

“There is no largest integer”

—dxVy(x2y)
= VXx—aVy (x2y)
Vx dy=(x2y)
= Vxdy (x<vy)

“For every integer there is a larger integer”

Scope of Quantifiers

Ix (P(x) AQ(x)) vs. dIxP(x) A dx Q(x)

Scope of Quantifiers

Ix (P(x) AQ(x)) vs. dIxP(x) A dx Q(x)

This one asserts P This one asserts P and Q
and Q of the same x. of potentially different x’s.

Scope of Quantifiers

Example: NotlLargest(x) = 3y Greater (y, x)
= 1z Greater (z, x)

truth value:

doesn’t depend on y or z “bound variables”
does depend on X “free variable”

quantifiers only act on free variables of the formula
they quantify

V x(Fy (Pxy) = V xQly, x)))

Quantifier “Style”

Vx(3y (P(x,y) = V x Q(y, x)))

This isn’'t “wrong”, it’s just horrible style.
Don’t confuse your reader by using the same
variable multiple times...there are a lot of letters...

