CSE 311: Foundations of Computing

Lecture 2: More Logic, Equivalence & Digital Circuits
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Last class: Some Connectives & Truth Tables

Negation (not) Conjunction (and)
T = T T T
T F F
F | T
F T F
F F F
Disjunction (or) Exclusive Or
p q |pvq p | q | pDq
T T T T T F
T F T T F T
F T T F T T
F F F F F F




Last Class: p — ¢q
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Biconditional: p & ¢q

p iff q

* pis equivalent to q

 pimplies g and g implies p

* pis necessary and sufficient for q
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Biconditional: p & ¢q

p iff q
* pis equivalent to q

p implies g and g implies p
* pis necessary and sufficient for q
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Last class: Using Logical Connectives

Measles:

“You can get measles”
Mumps:

“You can get mumps”
MMR:

“You had the MMR vaccine”

“You can get measles and mumps if you didn’t have the
MMR vaccine, but if you had the MMR vaccine then you can’t
get either.” l

((Measles and Mumps) if not MMR) and (if MMR then not (Measles or Mumps))

\

((Measles umps) if =MMR) A (if MMR then G(Measles v Mumps))
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Understanding the Vaccine Sentence

“You can get measles and mumps if you didn’t have
the MMR vaccine, but if you had the MMR vaccine you
can’t get either.” l

((Measles A Mumps) if =MMR) A (if MMR then —(Measles v Mumps))

|

(=-MMR - (Measles A Mumps)) A (MMR — —(Measles v Mumps))



Understanding the Vaccine Sentence

“You can get measles and mumps if you didn’t have
the MMR vaccine, but if you had the MMR vaccine you
can’t get either.” l

((Measles A Mumps) if =MMR) A (if MMR then —(Measles v Mumps))

|

(=-MMR - (Measles A Mumps)) A (MMR — —(Measles v Mumps))

Define shorthand ...
p . MMR
q : Measles
r - Mumps

!
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Analyzing the Vaccine Sentence with a Truth Table
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Analyzing the Vaccine Sentence with a Truth Table

(=p — (@A) A

q|r |-p|qAr |-p—(@AT) [qVTr |=(qVT) [p—>-(qVT) (P> —(qVTr)
T|T{F| T T T F ; F
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Converse, Contrapositive

Implication: Contrapositive:
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p: x is divisible by 2
q: x is divisible by 4
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Converse, Contrapositive

Implication:
pP—q
Converse:
q—>p

Consider
p: x is divisible by 2
q: x is divisible by 4

p—>q | X q
q—>p \/

Contrapositive:
q —
p —
P ali
Divisible By 2 Not Divisible By 2
Divisible By4 | 4| 3§ Linpas;
Not Divisible By 4 © N3 5
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Converse, Contrapositive

Implication: Contrapositive:
P—q q— P
Converse:
q—>p P — —q
Consider

p: x is divisible by 2

q: x is divisible by 4 Divisible By 2 | Not Divisible By 2

p—q . .
Divisible By 4 4,8,12,... Impossible
q—>p
Not Divisible By 4 2,6,10,... 1,3,5,...




Converse, Contrapositive

Implication:

pP—q
Converse:
q—p

Contrapositive:

q —

p

p —

q
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Converse, Contrapositive

Implication: Contrapositive:
pP—q q — —pP
Converse:
q—>p P — —q

An implication and it's contrapositive
have the same truth value!

Pl q |P>q9 | q>pP |—P |q | P>—q | —~q—>P
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Tautologies!

Terminology: A compound proposition is a...
— Tautology if it is always true
— Contradiction if it is always false
— Contingency if it can be either true or false
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Tautologies!

Terminology: A compound proposition is a...
— Tautology if it is always true
— Contradiction if it is always false
— Contingency if it can be either true or false
PVv-=p

This is a tautology. It’s called the “law of the excluded middle.
If p is true, then p v —p is true. If p is false, then p v —p is true.

p&p
This is a contradiction. It’s always false nho matter what truth
value p takes on.

(P—>aq)Ap
This is a contingency. When p=T, g=T, (T = T)AT is true.
When p=T, q=F, (T > F)AT is false.



Logical Equivalence

A = B means A and B are identical “strings”:
—PANq=pPpANQq

— PAQEQGAD



Logical Equivalence

A = B means A and B are identical “strings”:
— PAG=PpAQ
These are equal, because they are character-for-character identical.

— PAQEQGAP

These are NOT equal, because they are different sequences of
characters. They “mean” the same thing though.

A = B means A and B have identical truth values:

—pAquAqv/’

— PAG=QAP
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Logical Equivalence

A = B means A and B are identical “strings”:
—PANq=pPpANQq
These are equal, because they are character-for-character identical.
—PAQFQAP
These are NOT equal, because they are different sequences of

characters. They “mean” the same thing though.

A = B means A and B have identical truth values:
— PAG=EPAQ
Two formulas that are equal also are equivalent.
— PAG=qAP
These two formulas have the same truth table!
—PANGEGVP
When p=T and q=F, p A q is false, but p V q is true!



A<>B vs. A=B

P<>9 }><ﬁ
A = B is an assertion over all possible truth values
that A and B always have the same truth values.

A <> B is a proposition that may be true or false

depending on the truth values of the variables in A
and B.

A =B and (A < B) =T have the same meaning.
73



De Morgan’s Laws

—-(PAQ)=—pVv—Q
—-(pvQg)=—pA-—Q

Negate the statement:
“My code compiles or there is a bug.”

To negate the statement, ask “when is the original statement

false”.
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De Morgan’s Laws

—-(PAQ)=—pVv—Q
—-(pvQg)=—pA-—Q

Negate the statement:
“My code compiles or there is a bug.”

To negate the statement, ask “when is the original statement
false”.

It's false when not(my code compiles) AND not(there is a bug).

Translating back into English, we get:
My code doesn’t compile and there is not a bug.



De Morgan’s Laws

Example: —(p A qg)=(—p Vv —Qq)

plg|—p | —q | =pv—q | pAq| =(pAQ) | =(pAQq) <> (—pV—q)
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De Morgan’s Laws

Example: —(p A qg)=(—p Vv —Qq)

plg|—p | —q | =pv—q | pAq| =(pAQ) | =(pAQq) <> (—pV—q)
T T F F F T F T
T|F F T T F T T
FIT T F T F T T
F|F T T T F T T




De Morgan’s Laws

—(pPAQ)=—pVv—Q
—(Pp v Q) =—-p A0

if (!(front != null && value > front.data))
front = new ListNode(value, front);

else {
ListNode current = front;
while (current.next != null & & current.next.data < value))

current = current.next;
current.next = new ListNode(value, current.next);
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De Morgan’s Laws

—(pPAQ)=—pVv—Q
—(Pp v Q) =—-p A0

I (front != null && value > front.data)

front == null || value <= front.data

You've been using these for a while!



Law of Implication =
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Law of Implication

p—>qg=—pVvq

pvdqg

p—>q<& pvqg
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Some Equivalences Related to Implication

0 —> C = —|pvq

0 —> ( = |q > |p

0> C = (P> a)A@—>p)
0 <> C = —P <> —(



We will always give

Properties of Logical Connectives you this list!

Identity * Associative

- pAT=p - (vgvr=pv(gVvr)

- pVF=p —-(PAQDAT=pA(qAT)
Domination * Distributive

- pVT=T {—pA(qu)E(p/\q)V(p/\r)
- pAF=F -pvV@Ar) =@V Ar(Vr)
Idempotent * Absorption

- pVp=p -pV(PAQ =P

- pPApP=Dp -pA(pV@ =p
Commutative * Negation

—pVqg=EqVp —pVap=T

—DPAQ=EqAD —pA=ap=F



Digital Circuits

Computing With Logic
—T corresponds to 1 or “high” voltage
—F corresponds to O or “low” voltage

Gates
— Take inputs and produce outputs (functions)
— Several kinds of gates

— Correspond to propositional connectives (most
of them)



And Gate

AND Connective  vs. AND Gate
PAQ g: AND }—O0UT
p q | PANq p q ouT
T T T 1 1 1
T F F 1 0 0
F T F 0 1 0
F F F 0 0 0
p [——
AND ouT
q —

“block looks like D of AND”




Or Gate

OR Connective VS. OR Gate
pvg P Jory—our
p q | PVq p q ouT
T T T 1 1 1
T F T 1 0 1
F T T 0 1 1
F F F 0 0 0

“arrowhead block looks like V”



Not Gates

NOT Connective VS. NOT Gate
—|p p ouT \
Also called
inverter
P —-p p ouT
T 1 0
F T 0 1

p %row




Blobs are Okay!

You may write gates using blobs instead of shapes!
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Combinational Logic Circuits

P>
q

Values get sent along wires connecting gates




Combinational Logic Circuits

P>
q

Values get sent along wires connecting gates

pA(=gA(rVs))



Combinational Logic Circuits

p

g

AND

AND

Wires can send one value to multiple gates!



Combinational Logic Circuits

p

g

AND

AND

Wires can send one value to multiple gates!

(PA=q)V(mqAT)



Computing Equivalence

Describe an algorithm for computing if two logical
expressions/circuits are equivalent.

What is the run time of the algorithm?

Compute the entire truth table for both of them!

There are 2" entries in the column for n variables.



Some Familiar Properties of Arithmetic

*xt+ty=y+x (Commutativity)

e x-(y+z)=x-y+x-z (Distributivity)

s (x+y)+z=x+(y+2z) (Associativity)



Understanding Connectives

* Reflect basic rules of reasoning and logic
* Allow manipulation of logical formulas

— Simplification

— Testing for equivalence
* Applications

— Query optimization

— Search optimization and caching

— Artificial Intelligence

— Program verification



