CSE 311: Foundations of Computing

Lecture 2: More Logic, Equivalence & Digital Circuits

§ L ?j aw
A COM- B I Cr I ¥
DADDY, JUNCTIONT COMTUNCTION JuRCTioN, HOOKIMGEG UP WoRDS AND
WHAT'S A § WHAT'S YalR FUsCTIONT

CONTUNETIONT

EU—_@

Last class: Some Connectives & Truth Tables

Negation (not) Conjunction (and)
T = T T T
T F F
Fl T
F T F
F F F
Disjunction (or) Exclusive Or
p q |pvq P | a | pDg
T T T T T F
T F T T F T
F T T F T T
F F F F F F

Last Class: N © 1

'\f ,f) lLu\ 7
Implication: G p=T od oo F
I pimplies Q
I whenever p is true g must be true
I if pthenQ

n|m|-|H|o
M- T |- [QO
—|=|m|=]|{

i pis sufficientforq - 7’& "" “’”LI"M °"ﬁ

i ponlyifg 7 Pﬁ

I g Is necessary for p

Biconditional:) P n

0 iff g
D is equivalent to
D implies g and g implies p

Do To Po Ix

D is hecessary and sufficient for Q

pl g |lpeog
T |7

E| T
2l f
£l

VM| -

Biconditional:) P n

0 iff g

D is equivalent to

D implies g and g implies p

D is hecessary and sufficient for Q

Do To Po Ix

P 4q

T4
|74 Q

—|m|n|=|T

Last class: Using Logical Connectives

Measles:

“You can get measles”
Mumps:

“You can get mumps”
MMR:

“You had the MMR vaccine”

“You can get measles and mumps if you didn’t have the
MMR vaccine, but if you had the MMR vaccine then you can’t
get either.” l

((Measles and Mumps) if not MMR) and (if MMR then not (Measles or Mumps))

\

((Measles umps) if MMR)™ (if MMR then ((Measles™ Mumps))
- ,M\g& (Mo NMveps)) N (MR q7 -7(/‘/\0% V Muayps)

Understanding the Vaccine Sentence

“You can get measles and mumps if you didn’t have
the MMR vaccine, but if you had the MMR vaccine you
can’t get either.” l

((Measles™ Mumps)if MMR)" (if MMR then (Measles™ Mumps))

|

(MMR© (Measles™ Mumps))” (MMR © (Measles™ Mumps))

Understanding the Vaccine Sentence

“You can get measles and mumps if you didn’t have
the MMR vaccine, but if you had the MMR vaccine you
can’t get either.” l

((Measles™ Mumps)if MMR)" (if MMR then (Measles™ Mumps))

|

(MMR© (Measles™ Mumps))” (MMR © (Measles™ Mumps))

Define shorthand ...
n: MMR
N : Measles
1 :Mumps

@r = (g Rorgkhy™ H61idl i

Analyzing the Vaccine Sentence with a Truth Table

A »

—

(== (& »)

>

A >

A > | ==

/V

‘:

—

r

A > | A »

—p—

IHEAEEIE
TITIFIFIF | T

TIFIFIF| E T

FITITIT T
FITIFIT] F

FIFIF|T] €

| A|>| = A > —

Analyzing the Vaccine Sentence with a Truth Table

AP e A P =m A D> (A P> LA > =P &> (-_O([?)l
T|T{F| T T T F F F
TIF|F] F T T F F F
FIT|F| F T T F F F
FIF|F| F T F T T T
T|T{T| T T T F T T
TIF|T] F F T F T F
FIT|T| F F T F T F
FIF|T| F F F T T F

Converse, Contrapositive

Implication: Contrapositive:
f T ‘\.a < 'j Jw.s;\
h"‘l""" 1) 1 Anen

p — q s V¥ orew g q I:')Li -\; Jo t Aede ¢

Converse: " b
1{ !L f&:Ag L

q—=>P 1 4ty © P — —(

Consider

p: X is divisible by 2
g: X is divisible by 4

P—(
q—>p

Converse, Contrapositive

Implication: Contrapositive:
Converse:
q—p p—
Consider
p: X is divisible by 2 T " f’
g: Xis divisible by 4 Divisible By 2 | Not Divisible By 2
Z: E \}< U1 Divisible By 4 4 8 . I‘hrw s
o al (i Not Divisible By 4 2, % r\' 3, 5

Converse, Contrapositive

Implication:

P—>(
Converse:
q—>P

Consider
p: X is divisible by 2
g: X is divisible by 4

P—(q
q—>p

Contrapositive:
q—
P —
Divisible By 2 Not Divisible By 2
Divisible By 4 4,8,12,... Impossible
Not Divisible By 4 2,6,10,... 1,3,5,...

Converse, Contrapositive

Implication: Contrapositive:
P—>(g — =P
Converse:
q % p Ip) Iq
How do these rel her?
el N\ ‘
Pl 9 | P—~Qq | q—=>p |—P |9 —p—=>-q | q—=>-P
T| T |7)]: L — -
TIFIF T el 7D F
FIT 10 = |0 | F F T
FIFITT | L B \

Converse, Contrapositive

Implication: Contrapositive:
P—(q—>-pP
Converse:
q—>pP P ——q

An implication and it's contrapositive
have the same truth value!

Pl a|pP=>a|q>p|-P|-q [—-P>—Q |-q>-p

m| M| |-
M| |7 |-
- | =M |-
- | |— |-
— (= |m|m
—|(m|= |
—|m ||
- | =M |-

Tautologies!

Terminology: A compound proposition is a...
I Tautologyif it is always true
I Contradictionif it is always false
I Contingencyif it can be either true or false

@
P pC.‘,\)er\
(P—o>q)Ap _
by T7F F
PﬁT 0\;\ — T

Tautologies!

Terminology: A compound proposition is a...
I Tautologyif it is always true
I Contradictionif it is always false
I Contingencyif it can be either true or false
PVv-=p

This is a tautology. It’s called the “law of the excluded middle.
If p is true, then p v —p is true. If p is false, then p v —p is true.

p&p
This is a contradiction. It’s always false nho matter what truth
value p takes on.

(P—>0q)Ap
This is a contingency. When p=T, q=T, (T— T)ATis true.
When p=T, q=F, (T— F)ATis false.

Logical Equivalence

A = B means A and B are identical “strings”:
I pAQ=pAq

I pArg gqaAp

Logical Equivalence

A = B means A and B are identical “strings”:
I pAg=pAaq

These are equal, because they are character-for-character identical.

I pAqQ gAap
~———— _/
These are NOT equal, because they are different sequences of
characters. They “mean” the same thing though.

A = B means A and B have identical truth values:

i pAquAq\/

—_—
e
e

Logical Equivalence

A = B means A and B are identical “strings”:
I pAg=pAq
These are equal, because they are character-for-character identical.
I pAg QgAp
These are NOT equal, because they are different sequences of

characters. They “mean” the same thing though.

A = B means A and B have identical truth values:
I pAg=pAq
Two formulas that are equal also are equivalent.
I pAQ=QqAp
These two formulas have the same truth table!
I pAgKQvVDp
When p=T and g=F, p~ qis false, but p~ qis true!

A<>B vs. A=B

P<>9 }><ﬁ
A = B is an assertion over all possible truth values
that A and B always have the same truth values.

A <> B is a proposition that may be true or false
depending on the truth values of the variables in A
and B.

A =B and (A < B) =T have the same meaning.
73

De Morgan’s Laws

—-(PAQ)=—pVv—Q
—-(pvQg)=—pA-—Q

Negate the statement:
“My code compiles or there is a bug.”

To negate the statement, ask “when is the original statement

false”.
/\/\j C.r/(a Co-rj\»'r \/ JL\» ST l’:j

ﬂ/V\J Cde A Al v b

. S h,.—l- l .
T ol s

De Morgan’s Laws

—-(PAQ)=—pVv—Q
—-(pvQg)=—pA-—Q

Negate the statement:
“My code compiles or there is a bug.”

To negate the statement, ask “when is the original statement
false”.

It's false when not(my code compiles) AND not(there is a bug).

Translating back into English, we get:
My code doesn’t compile and there is not a bug.

De Morgan’s Laws

Example: —(p A Q) = (=p v —0)

plg|—-pP | —q | =pv—q | pAq | =(pAQq) | =(pAQG) > (—pV—Qq)
T\T|E | F B 1 F T
TIFIE T T T T T
FIT|T F T E gl T
FIFIT [T gl S il

—

De Morgan’s Laws

Example: —(p A Q) = (=p v —0)

—pP | —q | = pv—q | pAq | =(pAq) | =(pAq)© (—pV Q)

Mm-S
M| 7|4
—A|(4|m|m
—A (T | d| ™
—A (|-

M| mTm| >
AT
Al ||

De Morgan’s Laws

—(pPAQ)=—pVv—Q
—(Pp v Q) =—-p A0

if (!(front!=null && value > front.data))
front = new ListNode (value, front);
else {
ListNode current = front;
while (current.next I= null && current.next.data < value))
current= current.next ;
current.next = new ListNode (value, current.next);
}

AFVOV\":: V\‘«M U VCJ’\ S j)for\‘}. XALG\

|

De Morgan’s Laws

—(pPAQ)=—pVv—Q
—(Pp v Q) =—-p A0

I(front != null && value > front.data)

front == null || value <= front.data

You've been using these for a while!

Law of Implication =
P—=>0==pPVv(
pP|q|p—>q| p | pvqg p—>q< npvq
gt TR 1
T|FIF e | F gl
i LI N T e W e 7

Law of Implication

P—=>0=—=pPV{

“pvgq

p>qe npvg

T

M T4 4

MmlHd|(m|4|R

=T =]

—A|d (T[T

— | =74

T
T
T

Some Equivalences Related to Implication

0 —> C = —|pvq

0 —> (= |q > |p

0> C = (P> a)A@—>p)
0 <> C = —P <> —(

We will always give

Properties of Logical Connectives you this list!

Identity * Associative

- pAT=p - (vgvr=pv(gVvr)

- pVF=p —-(PAQDAT=pA(qAT)
Domination * Distributive

- pVT=T {—pA(qu)E(p/\q)V(p/\r)
- pAF=F -pvV@Ar) =@V Ar(Vr)
Idempotent * Absorption

- pVp=p -pV(PAQ =P

- pPApP=Dp -pA(pV@ =p
Commutative * Negation

—pVqg=EqVp —pVap=T

—DPAQ=EqAD —pA=ap=F

Digital Circuits

Computing With Logic
I T corresponds to 1 or high voltage
I F corresponds to O or low voltage

Gates
| Take inputs and produce outputs (functions)
| Several kinds of gates

| Correspond to propositional connectives (most
of them)

And Gate

AND Connective vs. AND Gate
pAQg g: AND }—OUT
p | a|prq p | g | our
T T T 1 1 1
T F F 1 0 0
F T F 0 1 0
F F F 0 0 0

p ——
q _—
block looks like D of AND

AND ouT

Or Gate

OR Connective VS.

pva P Jory—aur
p qq | PVq p q ouT
T | T T 111 1
T | F T 11 0 1
F | T T 01| 1 1
F | F F 0 0 0

arrowhead block looks like V

Not Gates

NOT Connective
—p
p = p
T| F
F| T
p_

VS.

%'OUT

NOT Gate

e N,

ouT

Ol

Also called
inverter

Blobs are Okay!

You may write gates using blobs instead of shapes!

OUT
q
OUT
q

pOUT

Combinational Logic Circuits

g—pop—

Values get sent along wires connecting gates

Combinational Logic Circuits

g—pop—

Values get sent along wires connecting gates

pA(=gA(rVs))

Combinational Logic Circuits

Je,

g—oo—

AND

AND

Wires can send one value to multiple gates!

Combinational Logic Circuits

Je,

g—oo—

AND

AND

Wires can send one value to multiple gates!

(PA=q)V(mqAT)

Computing Equivalence

Describe an algorithm for computing if two logical
expressions/circuits are equivalent.

What is the run time of the algorithm?

Compute the entire truth table for both of them!

There are 2" entries in the column for n variables.

Some Familiar Properties of Arithmetic

*xt+ty=y+x (Commutativity)

e x-(y+z)=x-y+x-z (Distributivity)

s (x+y)+z=x+(y+2z) (Associativity)

Understanding Connectives

A Reflect basic rules of reasoning and logic
A Allow manipulation of logical formulas

I Simplification

I Testing for equivalence
A Applications

I Query optimization

I Search optimization and caching

I Artificial Intelligence

I Program verification

