CSE 311: Foundations of Computing

Lecture 2: More Logic, Equivalence & Digital Circuits

§ L ?j aw
A COM- B I Cr I ¥
DADDY, JUNCTIONT COMTUNCTION JuRCTioN, HOOKIMGEG UP WoRDS AND
WHAT'S A § WHAT'S YalR FUsCTIONT

CONTUNETIONT

EU—_@

Last class: Some Connectives & Truth Tables

Negation (not) Conjunction (and)
T = T T T
T F F
F | T
F T F
F F F
Disjunction (or) Exclusive Or
p q |pvq p | q | pDq
T T T T T F
T F T T F T
F T T F T T
F F F F F F

Last Class: p — ¢q

: . "f’r)ll“"ol p | q |p—q
Implication: G p-T ed ooF [T [T T
— p implies q T | F| F
— whenever p is true g must be true E ; I
—if pthen g
aitp) I
—qifp
— p is sufficient forq - 7’& besl "”"M :ﬁ y
o< Qg .
—ponlyifq ’PE be J /
— q is necessary for p £ e
FIFLT
Y \’l' —
SR

Biconditional: p & ¢q

p iff q

* pis equivalent to q

 pimplies g and g implies p

* pis necessary and sufficient for q

P g | P49
a1

T
T
.F

7

T
al
T

VM| -

Biconditional: p & ¢q

p iff q
* pis equivalent to q

p implies g and g implies p
* pis necessary and sufficient for q

P4

Mm-S
M| [H[Q

—|1111—|$

Last class: Using Logical Connectives

Measles:

“You can get measles”
Mumps:

“You can get mumps”
MMR:

“You had the MMR vaccine”

“You can get measles and mumps if you didn’t have the
MMR vaccine, but if you had the MMR vaccine then you can’t
get either.” l

((Measles and Mumps) if not MMR) and (if MMR then not (Measles or Mumps))

\

((Measles umps) if =MMR) A (if MMR then G(Measles v Mumps))
- N\IMQQY» (Mo NMeps)) N (MR 61; -7(/‘/\0% V Muayps)

Understanding the Vaccine Sentence

“You can get measles and mumps if you didn’t have
the MMR vaccine, but if you had the MMR vaccine you
can’t get either.” l

((Measles A Mumps) if =MMR) A (if MMR then —(Measles v Mumps))

|

(=-MMR - (Measles A Mumps)) A (MMR — —(Measles v Mumps))

Understanding the Vaccine Sentence

“You can get measles and mumps if you didn’t have
the MMR vaccine, but if you had the MMR vaccine you
can’t get either.” l

((Measles A Mumps) if =MMR) A (if MMR then —(Measles v Mumps))

|

(=-MMR - (Measles A Mumps)) A (MMR — —(Measles v Mumps))

Define shorthand ...
p . MMR
q : Measles
r - Mumps

!
(P - (‘f"("\u\(@;ﬂ?’f”)\)}/\ p(—j fc;)vr))

Analyzing the Vaccine Sentence with a Truth Table

q |7 |mp|qAT | p—(@AT) |qVT | =(qVT) [P (qVT) (ﬂp(_p)iqﬁ/\(z)\)/ﬁ))
TTFIT | 7T T F - -
TIEIFILF | T T F =
FITIFIT T T | & [F
FFlE LT ET T T
T TV TV T | T 1
TIFIT| F E T | F 1 -
FlT T F = Il F /\ F
FIEITT] € — 7 T t

Analyzing the Vaccine Sentence with a Truth Table

(=p — (@A) A

q|r |-p|qAr |-p—(@AT) [qVTr |=(qVT) [p—>-(qVT) (P> —(qVTr)
T|T{F| T T T F ; F
T|FIF| F T T F F F
FITIF| F T T F ; F
FIF|F| F T F T T T
T|T{T| T T T F T T
TIF|T| F F T F T F
FIT|T| F F T F T :
FIF|T| F ; ; T T F

Converse, Contrapositive

Implication: Contrapositive:
p]i T ‘\-a,‘* Ij Jots;j-l
” ‘“"‘l’\’— |) | a\h:n
p — q l\\u\ V¥ orew g q LL{ ; j“'l Aede ¢
Converse: (b e,
1{ !L f&:Ag L
Q=P 1 4oy ” P — —q
Consider

p: x is divisible by 2
q: x is divisible by 4

p—q
q—>p

Converse, Contrapositive

Implication:
pP—q
Converse:
q—>p

Consider
p: x is divisible by 2
q: x is divisible by 4

p—>q | X q
q—>p \/

Contrapositive:
q —
p —
P ali
Divisible By 2 Not Divisible By 2
Divisible By4 | 4| 3§ Linpas;
Not Divisible By 4 © N3 5
2,6) 3.

Converse, Contrapositive

Implication: Contrapositive:
P—q q— P
Converse:
q—>p P — —q
Consider

p: x is divisible by 2

q: x is divisible by 4 Divisible By 2 | Not Divisible By 2

p—q . .
Divisible By 4 4,8,12,... Impossible
q—>p
Not Divisible By 4 2,6,10,... 1,3,5,...

Converse, Contrapositive

Implication:

pP—q
Converse:
q—p

Contrapositive:

q —

p

p —

q

How do these rel her?
el N\

—q = —p

pl q |p>q|a>p |-p|-qa | P>—q
T|T|7 \ FF) nY
e [T (g5 [
FIT 10 = |0 | F F T
FIFIT 1IN V] v | X

Converse, Contrapositive

Implication: Contrapositive:
pP—q q — —pP
Converse:
q—>p P — —q

An implication and it's contrapositive
have the same truth value!

Pl q |P>q9 | q>pP |—P |q | P>—q | —~q—>P

m| M| |-
M| |7 |-
- | =M |-
- | |— |-
— (= |m|m
—|(m|= |
—|m ||
- | =M |-

Tautologies!

Terminology: A compound proposition is a...
— Tautology if it is always true
— Contradiction if it is always false
— Contingency if it can be either true or false

pv-p __
]Gb\l’-/{ij
D
PEPR)
P>a)Ap p=F —F
i PﬁT G\;T —> 1

Tautologies!

Terminology: A compound proposition is a...
— Tautology if it is always true
— Contradiction if it is always false
— Contingency if it can be either true or false
PVv-=p

This is a tautology. It’s called the “law of the excluded middle.
If p is true, then p v —p is true. If p is false, then p v —p is true.

p&p
This is a contradiction. It’s always false nho matter what truth
value p takes on.

(P—>aq)Ap
This is a contingency. When p=T, g=T, (T = T)AT is true.
When p=T, q=F, (T > F)AT is false.

Logical Equivalence

A = B means A and B are identical “strings”:
—PANq=pPpANQq

— PAQEQGAD

Logical Equivalence

A = B means A and B are identical “strings”:
— PAG=PpAQ
These are equal, because they are character-for-character identical.

— PAQEQGAP

These are NOT equal, because they are different sequences of
characters. They “mean” the same thing though.

A = B means A and B have identical truth values:

—pAquAqv/’

— PAG=QAP

v/
—PANGEQGVP
P-s’T, °’=F —>

—
T

—_—
e
e

—
=

Logical Equivalence

A = B means A and B are identical “strings”:
—PANq=pPpANQq
These are equal, because they are character-for-character identical.
—PAQFQAP
These are NOT equal, because they are different sequences of

characters. They “mean” the same thing though.

A = B means A and B have identical truth values:
— PAG=EPAQ
Two formulas that are equal also are equivalent.
— PAG=qAP
These two formulas have the same truth table!
—PANGEGVP
When p=T and q=F, p A q is false, but p V q is true!

A<>B vs. A=B

P<>9 }><ﬁ
A = B is an assertion over all possible truth values
that A and B always have the same truth values.

A <> B is a proposition that may be true or false

depending on the truth values of the variables in A
and B.

A =B and (A < B) =T have the same meaning.
73

De Morgan’s Laws

—-(PAQ)=—pVv—Q
—-(pvQg)=—pA-—Q

Negate the statement:
“My code compiles or there is a bug.”

To negate the statement, ask “when is the original statement

false”.
/\/\j C.r/(a Co-rj\»'r \/ JL\» ST l’:j

ﬂ/V\J Cde A Al v b

. S h,.—l- l .
T ol s

De Morgan’s Laws

—-(PAQ)=—pVv—Q
—-(pvQg)=—pA-—Q

Negate the statement:
“My code compiles or there is a bug.”

To negate the statement, ask “when is the original statement
false”.

It's false when not(my code compiles) AND not(there is a bug).

Translating back into English, we get:
My code doesn’t compile and there is not a bug.

De Morgan’s Laws

Example: —(p A qg)=(—p Vv —Qq)

plg|—p | —q | =pv—q | pAq| =(pAQ) | =(pAQq) <> (—pV—q)
TIT|g | F - 7 F T
T\VFIF | T T T T T
FIT|T F T E gl T
il Bl I O gl S il

—

De Morgan’s Laws

Example: —(p A qg)=(—p Vv —Qq)

plg|—p | —q | =pv—q | pAq| =(pAQ) | =(pAQq) <> (—pV—q)
T T F F F T F T
T|F F T T F T T
FIT T F T F T T
F|F T T T F T T

De Morgan’s Laws

—(pPAQ)=—pVv—Q
—(Pp v Q) =—-p A0

if (!(front != null && value > front.data))
front = new ListNode(value, front);

else {
ListNode current = front;
while (current.next != null & & current.next.data < value))

current = current.next;
current.next = new ListNode(value, current.next);

AFVOV\":: V\‘«M U VCJ’\ S j)for\‘}. XALG\

|

De Morgan’s Laws

—(pPAQ)=—pVv—Q
—(Pp v Q) =—-p A0

I (front != null && value > front.data)

front == null || value <= front.data

You've been using these for a while!

Law of Implication =
p—=>4=—pV(g
pP|q|p—>q| p |pVvqg p—>q< pvq
it T | R | 7 ay
TIFILF e | F gl
i LI N T N W i 5

Law of Implication

p—>qg=—pVvq

pvdqg

p—>q<& pvqg

T

Mnm| T |44

m| M| 4R

a4l

e I e T i I B

e B e I i I

T
T
T

Some Equivalences Related to Implication

0 —> C = —|pvq

0 —> (= |q > |p

0> C = (P> a)A@—>p)
0 <> C = —P <> —(

We will always give

Properties of Logical Connectives you this list!

Identity * Associative

- pAT=p - (vgvr=pv(gVvr)

- pVF=p —-(PAQDAT=pA(qAT)
Domination * Distributive

- pVT=T {—pA(qu)E(p/\q)V(p/\r)
- pAF=F -pvV@Ar) =@V Ar(Vr)
Idempotent * Absorption

- pVp=p -pV(PAQ =P

- pPApP=Dp -pA(pV@ =p
Commutative * Negation

—pVqg=EqVp —pVap=T

—DPAQ=EqAD —pA=ap=F

Digital Circuits

Computing With Logic
—T corresponds to 1 or “high” voltage
—F corresponds to O or “low” voltage

Gates
— Take inputs and produce outputs (functions)
— Several kinds of gates

— Correspond to propositional connectives (most
of them)

And Gate

AND Connective vs. AND Gate
PAQ g: AND }—O0UT
p q | PANq p q ouT
T T T 1 1 1
T F F 1 0 0
F T F 0 1 0
F F F 0 0 0
p [——
AND ouT
q —

“block looks like D of AND”

Or Gate

OR Connective VS. OR Gate
pvg P Jory—our
p q | PVq p q ouT
T T T 1 1 1
T F T 1 0 1
F T T 0 1 1
F F F 0 0 0

“arrowhead block looks like V”

Not Gates

NOT Connective VS. NOT Gate
—|p p ouT \
Also called
inverter
P —-p p ouT
T 1 0
F T 0 1

p %row

Blobs are Okay!

You may write gates using blobs instead of shapes!

q
q

pOUT

Combinational Logic Circuits

P>
q

Values get sent along wires connecting gates

Combinational Logic Circuits

P>
q

Values get sent along wires connecting gates

pA(=gA(rVs))

Combinational Logic Circuits

p

g

AND

AND

Wires can send one value to multiple gates!

Combinational Logic Circuits

p

g

AND

AND

Wires can send one value to multiple gates!

(PA=q)V(mqAT)

Computing Equivalence

Describe an algorithm for computing if two logical
expressions/circuits are equivalent.

What is the run time of the algorithm?

Compute the entire truth table for both of them!

There are 2" entries in the column for n variables.

Some Familiar Properties of Arithmetic

*xt+ty=y+x (Commutativity)

e x-(y+z)=x-y+x-z (Distributivity)

s (x+y)+z=x+(y+2z) (Associativity)

Understanding Connectives

* Reflect basic rules of reasoning and logic
* Allow manipulation of logical formulas

— Simplification

— Testing for equivalence
* Applications

— Query optimization

— Search optimization and caching

— Artificial Intelligence

— Program verification

