Section : Induction

1. Induction with Sums

(a) Prove for all $n \in \mathbb{N}$ that if you have two groups of numbers, a_1, \dots, a_n and b_1, \dots, b_n , such that $\forall (i \in [n]). a_i \leq b_i$, then it must be that:

$$\sum_{i=1}^{n} a_i \le \sum_{i=1}^{n} b_i$$

(b) For any $n \in \mathbb{N}$, define S_n to be the sum of the squares of the first n positive integers, or

$$S_n = \sum_{i=1}^n i^2$$

For all $n \in \mathbb{N}$, prove that $S_n = \frac{1}{6}n(n+1)(2n+1)$.

(c) Define the triangle numbers as $\triangle_n = 1+2+\cdots+n$, where $n \in \mathbb{N}$. We showed in lecture that $\triangle_n = \frac{n(n+1)}{2}$. Prove the following equality for all $n \in \mathbb{N}$:

$$\sum_{i=0}^{n} i^3 = \triangle_n^2$$

2. Induction

- (a) Prove that $9 | n^3 + (n+1)^3 + (n+2)^3$ for all n > 1 by induction.
- (b) Prove that $6n + 6 < 2^n$ for all $n \ge 6$.
- (c) Define

$$H_i = 1 + \frac{1}{2} + \dots + \frac{1}{i}$$

Prove that $H_{2^n} \ge 1 + \frac{n}{2}$ for $n \in \mathbb{N}$.