Spring 2015 Proof review session

Proof: A formal argument establishing the truth of some proposition.

A proof should be **easy to verify**.

But might be (very) hard to generate.

P vs. NP question [informal]:

Can computers find proofs efficiently? (see CSE 421, 431)

Proof systems: Start with a basic set of axioms, and use inference rules to devise new theorems.

Which axioms to use is a tricky subject... see CSE 431.

We will talk about a related issue later: Undecidability of the halting problem.

(p^ \$	$\begin{array}{c} (6) \longrightarrow \gamma \\ P \longrightarrow \gamma \end{array}$
r (۶) ۷ (````)
) P g

Modus Ponens	$\frac{p, \ p \to q}{\therefore q}$
Direct Proof	$\frac{p \Rightarrow q}{\therefore p \to q}$
Elim ∧	$\frac{p \wedge q}{\therefore p, \ q}$
Intro ∧	$\frac{p, q}{\cdot p \wedge q}$
Elim ∨	$\frac{p \lor q, \ \neg p}{\therefore q}$
Intro ∨	$\frac{p}{\therefore p \lor q, \ q \lor p}$
Excluded Middle	$\overline{\therefore p \lor \neg p}$
Elim ∀	$\frac{\forall x P(x)}{\therefore P(a) \text{ for any } a}$
Intro \forall	$\frac{\text{Let } a \text{ be an arbitrary} \dots}{\therefore \forall x P(x)}$
Elim ∃	$\frac{\exists x P(x)}{\therefore P(c) \text{ for some special } c}$
Intro ∃	$\frac{P(c) \text{ for some } c}{\therefore \exists x P(x)}$

inference rules

direct proofs

Show that $q \rightarrow r$ follows from $p \rightarrow r$ and $q \rightarrow p$. Direct prof that g ->r ×, Assumption 1. 9 Gilm 2. $p \rightarrow r$ 3. $q \rightarrow r$ 107. r Given MP(1), (3)*A.* | *P* MP(2),(4)5 Y (optimal for ty-level implication) 6. 9.-3ri

proofs using the direct proof rule

Show that r follows from q and $(p \land q) \rightarrow r$ and p. 1. 2 Fir 2. p AV 3. [2~ 6 intro-1 given 2. $(p \land q) \rightarrow r$ given 4. (p ~g) -> 6 Silen 3. p 4. p∧q 5.V assumption MP 3.4. from 1 and 3 via Intro \wedge rule modus ponens from 2 and 4 5. direct proof rule 6. $p \rightarrow r$ 6.5 MP L.E.² 6.6 pr(1gvr) LE. b' and 7 6.7 Mgvr Fl.m-V given 7. p modus ponens from 6 and 7 8. (d) lyind guiv, lan of impl. (51) De Mayon hot logit VIGVE = 78VE 5' 7(p1g)vr

=P)

15

direct proof & logical equivalences

Prove that $p \to q$ follows from r and $\neg (p \to \neg r) \to q$.

cannot use inference rules inside propositions

universal vs. existential instantiation

Prove that $\exists x P(x)$ follows from $\exists x Q(x)$ and $\forall x (Q(x) \rightarrow P(x))$.

1.
$$\forall x (Q(x) \rightarrow p(x))$$
 from
2. $Q(a) \rightarrow P(a)$ $\forall -ihsl. (1)$
for a arbitra
3. $\exists x Q(x)$ $given$
4. $Q(c)$ for som
specific C $\exists -ihsl. (3)$

1.
$$\exists x Q(x)$$

2. $Q(x)$ for some spee. c
3. $\forall x (Q(x) \rightarrow P(x))$
4. $Q(x) \rightarrow P(x)$
5. $P(x)$ 6. $\exists x P(x)$ $\exists -intro (5)$

universal generalization

Prove that $\forall x (P(x) \rightarrow Q(x))$ and $\forall x (Q(x) \rightarrow R(x))$ implies $\forall x (P(x) \to R(x)).$ 1. VX (P(x) > Q(x)) gues $2, \forall Y (Q(X) \rightarrow R(X))$ pun 3. P(a) -> Q(a) + - hst, (1) for some arbitrary a V-1154, (2/ y Dan - RGI Asrup -5 P(a) MP (3), (5) 6 Ola) MP ((), 14) 7. R(a) DPR(C) 8- P(a) - R(a) 9. XX(P(X)) R(XI) Intro-V (F)

example

proof by contradiction: one way to prove $\neg p$

If we assume p and derive False (a contradiction), then we have proved $\neg p$. If γp is βm , βp is βm .

קר. ט Snew 1. p assumption Intro an 2 ... PA7P 3. **F** direct Proof rule 4. $p \rightarrow F$ 5. $\neg p \lor F$ equivalence from 4 6. ¬p equivalence from 5

Prove that no whole number is both even and odd.

Pf. Assume f.f.s.o.c.
$$\exists www \# x$$

s.t. Een(X) and odd(X).
 $\exists \exists k_{ij} \ mtqrs \ r.t.$
 $x=2k$
 $x=2j+1$
 $\exists k=j+\frac{1}{2}$
Mith is a controloophin bk $j+\frac{1}{2}$ is not
a Note if j is an Note

English proof

Prove that for all sets A, B, C such that $C \neq \emptyset$, we have $A \times C = B \times C$ if and ony if A = B.

Prove that it A and B are sets for $A=B \iff P(A)=P(B)$

Let *a*, *b* be integers and *c*, *m* be positive integers. Prove that if $ac \equiv bc \pmod{cm}$ then $a \equiv b \pmod{m}$.