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cse 311: foundations of computing

Spring 2015
Lecture 28:  The halting problem and undecidability

last time

We saw that the real numbers between 0 and 1 are uncountable.

the set of all functions 𝑓 ∶ ℕ → {0,… , 9} is uncountable

1 2 3 4 5 6 7 8 9 ...

f1 0. 5 0 0 0 0 0 0 0 ... ...

f2 0. 3 3 3 3 3 3 3 3 ... ...

f3 0. 1 4 2 8 5 7 1 4 ... ...

f4 0. 1 4 1 5 9 2 6 5 ... ...

f5 0. 1 2 1 2 2 1 2 2 ... ...

f6 0. 2 5 0 0 0 0 0 0 ... ...

f7 0. 7 1 8 2 8 1 8 2 ... ...

f8 0. 6 1 8 0 3 3 9 4 ... ...

... .... ... .... .... ... ... ... ... ... ...

Supposed listing of all the functions:

the set of all functions 𝑓 ∶ ℕ → {0,… , 9} is uncountable

1 2 3 4 5 6 7 8 9 ...

f1 0. 5 0 0 0 0 0 0 0 ... ...

f2 0. 3 3 3 3 3 3 3 3 ... ...

f3 0. 1 4 2 8 5 7 1 4 ... ...

f4 0. 1 4 1 5 9 2 6 5 ... ...

f5 0. 1 2 1 2 2 1 2 2 ... ...

f6 0. 2 5 0 0 0 0 0 0 ... ...

f7 0. 7 1 8 2 8 1 8 2 ... ...

f8 0. 6 1 8 0 3 3 9 4 ... ...

... .... ... .... .... ... ... ... ... ... ...

Supposed listing of all the functions:

Flipping rule:

If 𝑓𝑛 𝑛 = 5, set 𝐷 𝑛 = 1

If 𝑓𝑛 𝑛 ≠ 5, set 𝐷 𝑛 = 5
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the set of all functions 𝑓 ∶ ℕ → {0,… , 9} is uncountable

1 2 3 4 5 6 7 8 9 ...

f1 0. 5 0 0 0 0 0 0 0 ... ...

f2 0. 3 3 3 3 3 3 3 3 ... ...

f3 0. 1 4 2 8 5 7 1 4 ... ...

f4 0. 1 4 1 5 9 2 6 5 ... ...

f5 0. 1 2 1 2 2 1 2 2 ... ...

f6 0. 2 5 0 0 0 0 0 0 ... ...

f7 0. 7 1 8 2 8 1 8 2 ... ...

f8 0. 6 1 8 0 3 3 9 4 ... ...

... .... ... .... .... ... ... ... ... ... ...

Supposed listing of all the functions:

Flipping rule:

If 𝑓𝑛 𝑛 = 5, set 𝐷 𝑛 = 1

If 𝑓𝑛 𝑛 ≠ 5, set 𝐷 𝑛 = 5
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For all 𝑛, we have 𝐷 𝑛 ≠ 𝑓𝑛(𝑛).  Therefore 𝐷 ≠ 𝑓𝑛 for any 𝑛 and the list is 
incomplete!                       ⇒ 𝑓 𝑓:ℕ → {0,1,… , 9}} is not countable

uncomputable functions

We have seen that:

– [last time] The set of all (Java) programs is countable

– The set of all functions 𝑓 ∶ ℕ → {0,… , 9} is not countable

So:  There must be some function 𝑓 ∶ ℕ → {0,… , 9} that is not

computable by any program!
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recall our language picture

All

Context-Free

Regular

Finite

0*
DFA

NFA

Regex

Binary Palindromes

{001, 10, 12}

Java

a cse 141 assignment

Students should write a Java program that:

– Prints “Hello” to the console

– Eventually exits

GradeIt, PracticeIt, etc. need to grade the students. 

How do we write that grading program?

follow up question

What does this program do?

_(__,___,____){___/__<=1?_(__,___+1,___ 

_):!(___%__)?_(__,___+1,0):___%__==___ / 

__&&!____?(printf("%d\t",___/__),_(__,_ 

__+1,0)):___%__>1&&___%__<___/__?_( __,1+ 

___,____+!(___/__%(___%__))):___<__*__ 

?_(__,___+1,____):0;}main(){_(100,0,0);} 

follow up question #2

public static void collatz(n) {

if (n == 1) {

return 1;

}

if (n % 2 == 0) {

return collatz(n/2)

}

else {

return collatz(3n + 1)

}

}

What does this program do?

… on n=5?

… on n=10000000000000000001?

a cse 141 assignment

Students should write a Java program that:

– Prints “Hello” to the console

– Eventually exits

GradeIt, PracticeIt, etc. need to grade the students. 

How do we write that grading program?

some notation

We’re going to be talking about Java code. 

CODE(P) will mean “the code of the program P”

So, consider the following function:
public String P(String x) {

return new String(Arrays.sort(x.toCharArray());

}

What is P(CODE(P))?
“((()))..;AACPSSaaabceeggghiiiilnnnnnooprrrrrrrrrrrsssttttttuuwxxyy{}”
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the Halting problem

Given: - CODE(P) for any program P

- input x

Output:   true if P halts on input x

false if P does not halt on input x

It turns out that it isn’t possible to write a program that 
solves the Halting Problem.

proof by contradiction

• Suppose that H is a Java program that solves the Halting 
problem.   Then we can write this program:

public static void D(x) {

if (H(x,x) == true) {

while (true);   /* don’t halt */

}

else {

return; /*    halt    */

}

}

• Does D(CODE(D)) halt?

H solves the halting problem implies that                              
H(CODE(D),x) is true iff D(x) halts,  H(CODE(D),x) is false iff not

Suppose D(CODE(D)) halts.
Then, we must be in the second case of the if.
So, H(CODE(D), CODE(D)) is false 
Which means D(CODE(D)) doesn’t halt

Suppose D(CODE(D)) doesn’t halt.
Then, we must be in the first case of the if.
So, H(CODE(D), CODE(D)) is true.
Which means D(CODE(D)) halts. 

public static void D(x) {
if (H(x,x) == true) {

while (true); /* don’t halt */
}
else {

return; /*    halt    */

}
}

Does D(CODE(D)) halt?

H solves the halting problem implies that                              
H(CODE(D),x) is true iff D(x) halts,  H(CODE(D),x) is false iff not

Suppose D(CODE(D)) halts.
Then, we must be in the second case of the if.
So, H(CODE(D), CODE(D)) is false 
Which means D(CODE(D)) doesn’t halt

Suppose D(CODE(D)) doesn’t halt.
Then, we must be in the first case of the if.
So, H(CODE(D), CODE(D)) is true.
Which means D(CODE(D)) halts. 

public static void D(x) {
if (H(x,x) == true) {

while (true); /* don’t halt */
}
else {

return; /*    halt    */

}
}

Does D(CODE(D)) halt?

H solves the halting problem implies that                              
H(CODE(D),x) is true iff D(x) halts,  H(CODE(D),x) is false iff not

Suppose D(CODE(D)) halts.
Then, we must be in the second case of the if.
So, H(CODE(D), CODE(D)) is false 
Which means D(CODE(D)) doesn’t halt

Suppose D(CODE(D)) doesn’t halt.
Then, we must be in the first case of the if.
So, H(CODE(D), CODE(D)) is true.
Which means D(CODE(D)) halts. 

public static void D(x) {
if (H(x,x) == true) {

while (true); /* don’t halt */
}
else {

return; /*    halt    */

}
}

Does D(CODE(D)) halt?

H solves the halting problem implies that                              
H(CODE(D),x) is true iff D(x) halts,  H(CODE(D),x) is false iff not

Suppose D(CODE(D)) halts.
Then, we must be in the second case of the if.
So, H(CODE(D), CODE(D)) is false 
Which means D(CODE(D)) doesn’t halt

Suppose D(CODE(D)) doesn’t halt.
Then, we must be in the first case of the if.
So, H(CODE(D), CODE(D)) is true.
Which means D(CODE(D)) halts. 

public static void D(x) {
if (H(x,x) == true) {

while (true); /* don’t halt */
}
else {

return; /*    halt    */

}
}

Does D(CODE(D)) halt?

Contradiction!
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done

• We proved that there is no computer program that can solve 
the Halting Problem.

– There was nothing special about Java*   [Church-Turing thesis]

• This tells us that there is no compiler that can check our programs 
and guarantee to find any infinite loops they might have.

connection to diagonalization

<P1> <P2> <P3> <P4> <P5> <P6> .... Some possible inputs x

P1

P2

P3

P4

P5

P6

P7

P8

P9

.

.

0     1     1     0    1     1    1     0      0      0    1  ...

1     1     0     1    0     1    1     0      1      1   1  ...

1     0     1     0    0     0    0     0      0      0    1  ...

0     1     1  0    1     0    1     1      0      1   0  ...

0     1     1     1    1     1    1     0      0      0   1  ...

1     1     0     0    0     1    1     0      1      1   1  ...

1     0     1     1    0     0    0     0      0      0   1  ...

0     1     1     1    1     0    1     1      0      1   0  ...

.     .   .  .   .    .   .   .   .    .    .       .  

.     .   .  .   .    .   .   .   .    .    .       .  

(P,x) entry is 1 if program P halts on input x
and 0 if it runs forever

connection to diagonalization

<P1> <P2> <P3> <P4> <P5> <P6> .... Some possible inputs x

P1

P2

P3

P4

P5

P6

P7

P8

P9

.

.

0 1     1     0    1     1    1     0      0      0    1  ...

1     1 0     1    0     1    1     0      1      1   1  ...

1     0     1 0    0     0    0     0      0      0    1  ...

0     1     1  0 1     0    1     1      0      1   0  ...

0     1     1     1    1 1    1     0      0      0   1  ...

1     1     0     0    0     1 1     0      1      1   1  ...

1     0     1     1    0     0    0 0      0      0   1  ...

0     1     1     1    1     0    1     1 0      1   0  ...

.     .   .  .   .    .   .   .   .    .    .       .  

.     .   .  .   .    .   .   .   .    .    .       .  

(P,x) entry is 1 if program P halts on input x
and 0 if it runs forever
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reductions

- Can use undecidability of the halting problem to show that other
problems are undecidable.

- For instance:  Given two programs 𝑃 and 𝑄, is it true that
𝑃 𝑥 = 𝑄(𝑥) for every input 𝑥?

Rice’s theorem

Not every problem on programs is undecidable!

Which of these is decidable?

• Input CODE(P) and x
Output: true if P prints “ERROR” on input x

after less than 100 steps
false otherwise

• Input CODE(P) and x
Output: true    if P prints “ERROR” on input x

after more than 100 steps
false otherwise

Compilers Suck Theorem (informal):
Any “non-trivial” property the input-output behavior of Java 
programs is undecidable.

foundations I, complete.

What’s next?

Foundations II:  Probability, statistics, and uncertainty.

The final exam is Monday, Jun 8, 2015, 2:30-4:20 p.m. in MLR 301.
Notes: One page of notes allowed, front and back.
Review sessions:
• Saturday, June 6th, 2015: 1pm in EEB 105 (James)
• Sunday, June 7th, 2015: 2pm in EEB 105 (TAs)

And then… summer!


