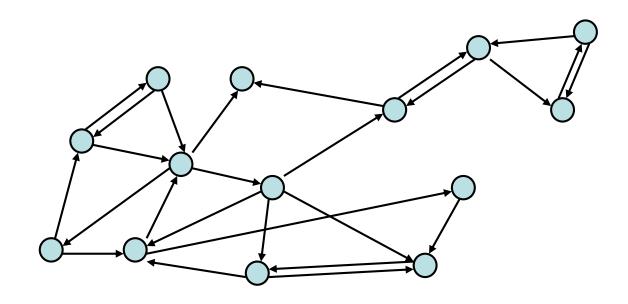


cse 311: foundations of computing

# Spring 2015 Lecture 26: Relations and directed graphs



### relations

# Let A and B be sets. A binary relation from A to B is a subset of $A \times B$

Let A be a set. A binary relation on A is a subset of  $A \times A$ 

```
\geq on \mathbb{N}
    That is: \{(x,y) : x \ge y \text{ and } x, y \in \mathbb{N}\}
< on \mathbb{R}
    That is: \{(x,y) : x < y \text{ and } x, y \in \mathbb{R}\}
= on \Sigma^*
    That is: \{(x,y) : x = y \text{ and } x, y \in \Sigma^*\}
\subseteq on P(U) for universe U
    That is: \{(A,B) : A \subseteq B \text{ and } A, B \in P(U)\}
```



$$R_1 = \{(a, 1), (a, 2), (b, 1), (b, 3), (c, 3)\}$$

$$R_2 = \{(x, y) \mid x \equiv y \pmod{5} \}$$

$$R_3 = \{(c_1, c_2) | c_1 \text{ is a prerequisite of } c_2 \}$$

Let R be a relation on A.

R is reflexive iff (a,a)  $\in$  R for every a  $\in$  A

R is symmetric iff (a,b)  $\in$  R implies (b, a) $\in$  R

R is antisymmetric iff (a,b)  $\in$  R and a  $\neq$  b implies (b,a)  $\notin$  R

R is transitive iff  $(a,b) \in R$  and  $(b, c) \in R$  implies  $(a, c) \in R$ 

Let R be a relation from A to B. Let S be a relation from B to C.

The composition of R and S,  $S \circ R$  is the relation from A to C defined by:

 $S \circ R = \{(a, c) \mid \exists b \text{ such that } (a,b) \in R \text{ and } (b,c) \in S\}$ 

Intuitively, a pair is in the composition if there is a "connection" from the first to the second.



# $(a,b) \in Parent iff b is a parent of a$ $(a,b) \in Sister iff b is a sister of a$

When is  $(x,y) \in \text{Sister} \circ \text{Parent}$ ?

When is  $(x,y) \in Parent \circ Sister?$ 

 $S \circ R = \{(a, c) \mid \exists b \text{ such that } (a,b) \in R \text{ and } (b,c) \in S\}$ 

Using the relations: Parent, Child, Brother, Sister, Sibling, Father, Mother, Husband, Wife express:

Uncle: b is an uncle of a

Cousin: b is a cousin of a

Using the relations: Parent, Child, Brother, Sister, Sibling, Father, Mother, Husband, Wife express:

Uncle: b is an uncle of a

Uncle = Brother • Parent

Cousin: b is a cousin of a

Cousin = Child • Sibling • Parent

$$R^{2} = R \circ R$$
  
= {(a,c) |  $\exists b$  such that (a, b)  $\in R$  and (b,c)  $\in R$  }

$$R^{0} = \{(a, a) \mid a \in A\}$$
$$R^{1} = R$$

 $R^{n+1} = R^n \circ R$ 

$$R^{2} = R \circ R$$
  
= {(a, c) |  $\exists b$  such that (a, b)  $\in R$  and (b, c)  $\in R$  }

 $Parent^2 = GrandParent$ 

$$R^0 = \{(a, a) \mid a \in A\} \qquad R^0 \text{ is always equality}$$

 $R^1 = R$ 

 $R^{n+1} = R^n \circ R$ 

Relation R on 
$$A = \{a_1, \dots, a_p\}$$

$$m_{ij} = \begin{cases} 1 \text{ if } (a_i, a_j) \in R, \\ 0 \text{ if } (a_i, a_j) \notin R. \end{cases}$$

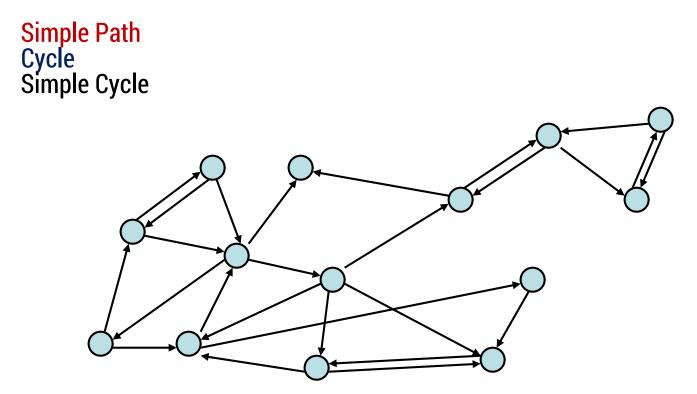
 $\{(1, 1), (1, 2), (1, 4), (2, 1), (2, 3), (3, 2), (3, 3), (4, 2), (4, 3)\}$ 

|   | 1 | 2 | 3 | 4 |
|---|---|---|---|---|
| 1 | 1 | 1 | 0 | 1 |
| 2 | 1 | 0 | 1 | 0 |
| 3 | 0 | 1 | 1 | 0 |
| 4 | 0 | 1 | 1 | 0 |

# directed graphs

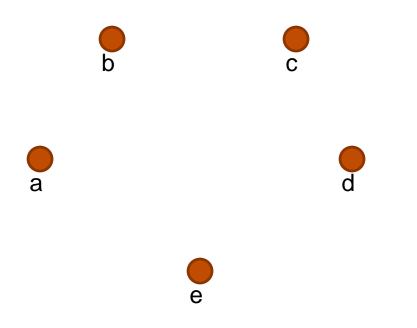
G = (V, E) V - vertices E - edges, ordered pairs of vertices

Path:  $v_0, v_1, ..., v_k$ , with  $(v_i, v_{i+1})$  in E



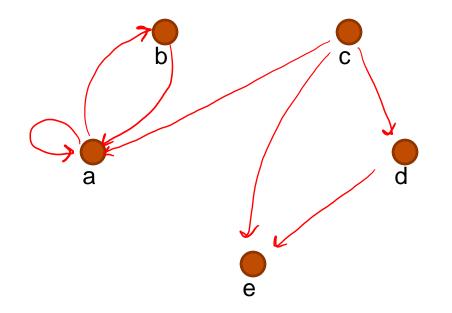
Directed Graph Representation (Digraph)

{(a, b), (a, a), (b, a), (c, a), (c, d), (c, e) (d, e) }



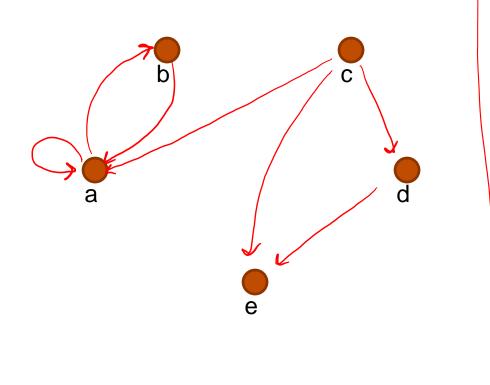
Directed Graph Representation (Digraph)

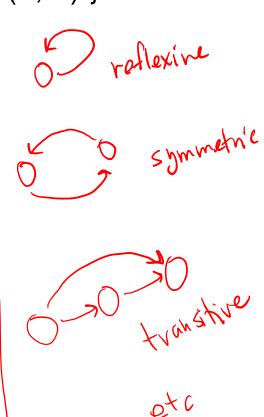
{(a, b), (a, a), (b, a), (c, a), (c, d), (c, e) (d, e) }



Directed Graph Representation (Digraph)

 $\{(a, b), (a, a), (b, a), (c, a), (c, d), (c, e) (d, e) \}$ 



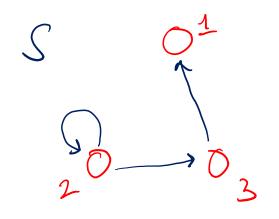


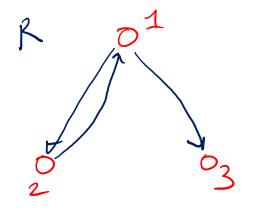
### relational composition using digraphs

If  $S = \{(2,2), (2,3), (3,1)\}$  and  $R = \{(1,2), (2,1), (1,3)\}$ Compute  $S \circ R$ 

### relational composition using digraphs

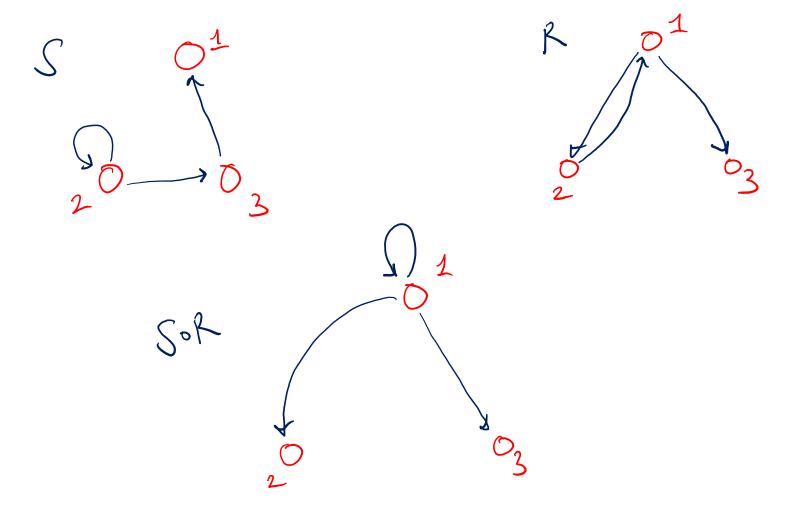
If  $S = \{(2,2), (2,3), (3,1)\}$  and  $R = \{(1,2), (2,1), (1,3)\}$ Compute  $S \circ R$ 





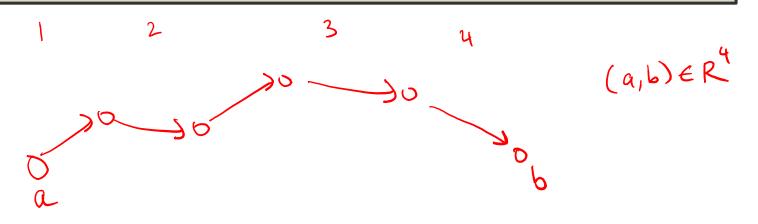
### relational composition using digraphs

If  $S = \{(2,2), (2,3), (3,1)\}$  and  $R = \{(1,2), (2,1), (1,3)\}$ Compute  $S \circ R$ 



A **path** in a graph of length n is a list of edges with vertices next to each other.

Let R be a relation on a set A. There is a path of length n from a to b if and only if  $(a,b) \in R^n$ 



Two vertices in a graph are **connected** iff there is a path between them.

Let R be a relation on a set A. The connectivity relation R\* consists of the pairs (a,b) such that there is a path from a to b in R.

$$R^* = \bigcup_{k=0}^{\infty} R^k$$

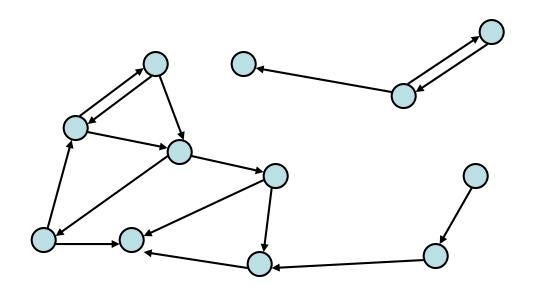
Note: The book uses the wrong definition of this quantity. What the text defines (ignoring k=0) is usually called R<sup>+</sup> Let R be a relation on A.

R is reflexive iff (a,a)  $\in$  R for every a  $\in$  A

R is symmetric iff (a,b)  $\in$  R implies (b, a) $\in$  R

R is transitive iff  $(a,b) \in R$  and  $(b, c) \in R$  implies  $(a, c) \in R$ 

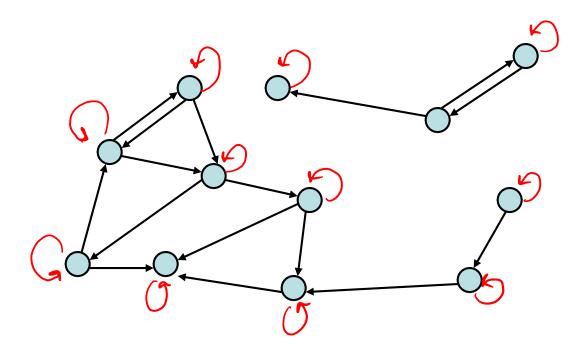
### transitive-reflexive closure



Add the minimum possible number of edges to make the relation transitive and reflexive.

The transitive-reflexive closure of a relation R is the connectivity relation R\*

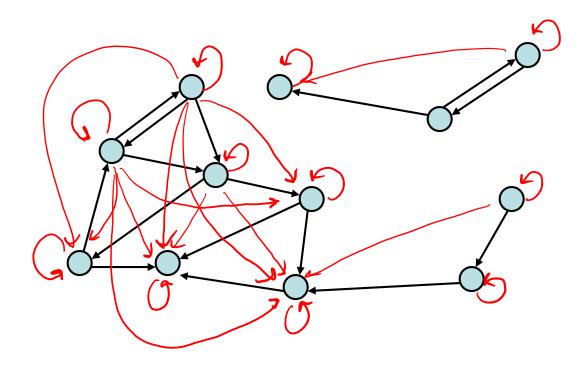
### transitive-reflexive closure



Add the minimum possible number of edges to make the relation transitive and reflexive.

The transitive-reflexive closure of a relation R is the connectivity relation R\*

### transitive-reflexive closure



Add the minimum possible number of edges to make the relation transitive and reflexive.

The transitive-reflexive closure of a relation R is the connectivity relation R\*

### n-ary relations

Let  $A_1, A_2, ..., A_n$  be sets. An **n-ary** relation on these sets is a subset of  $A_1 \times A_2 \times \cdots \times A_n$ .

(a, a, ..., a) E A x Az x ··· x An

#### STUDENT

| Student_Name | ID_Number | Office | GPA  |
|--------------|-----------|--------|------|
| Knuth        | 328012098 | 022    | 4.00 |
| Von Neuman   | 481080220 | 555    | 3.78 |
| Russell      | 238082388 | 022    | 3.85 |
| Einstein     | 238001920 | 022    | 2.11 |
| Newton       | 1727017   | 333    | 3.61 |
| Karp         | 348882811 | 022    | 3.98 |
| Bernoulli    | 2921938   | 022    | 3.21 |

# relational databases

### STUDENT

| Student_Name | ID_Number | Office | GPA  | Course |
|--------------|-----------|--------|------|--------|
| Knuth        | 328012098 | 022    | 4.00 | CSE311 |
| Knuth        | 328012098 | 022    | 4.00 | CSE351 |
| Von Neuman   | 481080220 | 555    | 3.78 | CSE311 |
| Russell      | 238082388 | 022    | 3.85 | CSE312 |
| Russell      | 238082388 | 022    | 3.85 | CSE344 |
| Russell      | 238082388 | 022    | 3.85 | CSE351 |
| Newton       | 1727017   | 333    | 3.61 | CSE312 |
| Karp         | 348882811 | 022    | 3.98 | CSE311 |
| Karp         | 348882811 | 022    | 3.98 | CSE312 |
| Karp         | 348882811 | 022    | 3.98 | CSE344 |
| Karp         | 348882811 | 022    | 3.98 | CSE351 |
| Bernoulli    | 2921938   | 022    | 3.21 | CSE351 |

### What's not so nice?

## relational databases

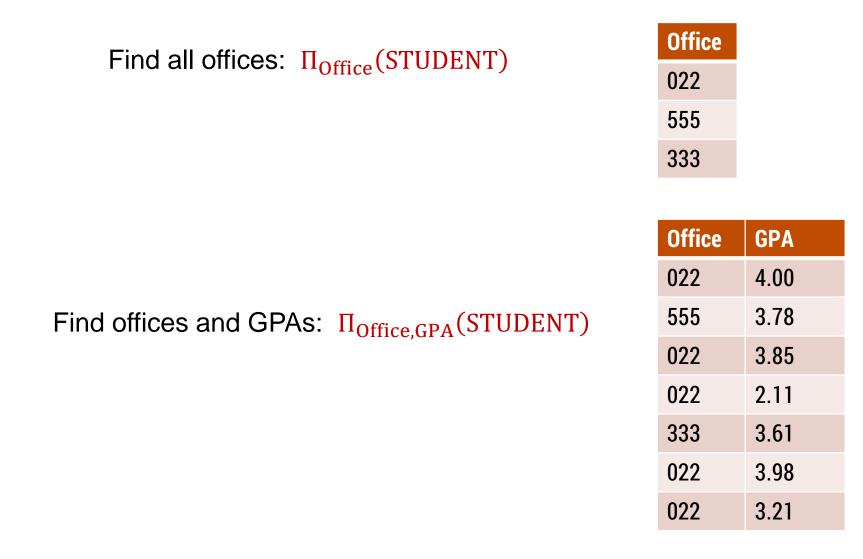
#### STUDENT

| Student_Name | ID_Number | Office | GPA  |
|--------------|-----------|--------|------|
| Knuth        | 328012098 | 022    | 4.00 |
| Von Neuman   | 481080220 | 555    | 3.78 |
| Russell      | 238082388 | 022    | 3.85 |
| Einstein     | 238001920 | 022    | 2.11 |
| Newton       | 1727017   | 333    | 3.61 |
| Karp         | 348882811 | 022    | 3.98 |
| Bernoulli    | 2921938   | 022    | 3.21 |

#### TAKES

| ID_Number | Course |
|-----------|--------|
| 328012098 | CSE311 |
| 328012098 | CSE351 |
| 481080220 | CSE311 |
| 238082388 | CSE312 |
| 238082388 | CSE344 |
| 238082388 | CSE351 |
| 1727017   | CSE312 |
| 348882811 | CSE311 |
| 348882811 | CSE312 |
| 348882811 | CSE344 |
| 348882811 | CSE351 |
| 2921938   | CSE351 |

### Better



### Find students with GPA > 3.9 : $\sigma_{\text{GPA}>3.9}$ (STUDENT)

| Student_Name | ID_Number | Office | GPA  |
|--------------|-----------|--------|------|
| Knuth        | 328012098 | 022    | 4.00 |
| Karp         | 348882811 | 022    | 3.98 |

Retrieve the name and GPA for students with GPA > 3.9:  $\Pi_{\text{Student}_N\text{ame},\text{GPA}}(\sigma_{\text{GPA}>3.9}(\text{STUDENT}))$ 

| Student_Name | GPA  |
|--------------|------|
| Knuth        | 4.00 |
| Karp         | 3.98 |

#### Student ⋈ Takes

| Student_Name | ID_Number | Office | GPA  | Course |
|--------------|-----------|--------|------|--------|
| Knuth        | 328012098 | 022    | 4.00 | CSE311 |
| Knuth        | 328012098 | 022    | 4.00 | CSE351 |
| Von Neuman   | 481080220 | 555    | 3.78 | CSE311 |
| Russell      | 238082388 | 022    | 3.85 | CSE312 |
| Russell      | 238082388 | 022    | 3.85 | CSE344 |
| Russell      | 238082388 | 022    | 3.85 | CSE351 |
| Newton       | 1727017   | 333    | 3.61 | CSE312 |
| Karp         | 348882811 | 022    | 3.98 | CSE311 |
| Karp         | 348882811 | 022    | 3.98 | CSE312 |
| Karp         | 348882811 | 022    | 3.98 | CSE344 |
| Karp         | 348882811 | 022    | 3.98 | CSE351 |
| Bernoulli    | 2921938   | 022    | 3.21 | CSE351 |