

cse 311: foundations of computing

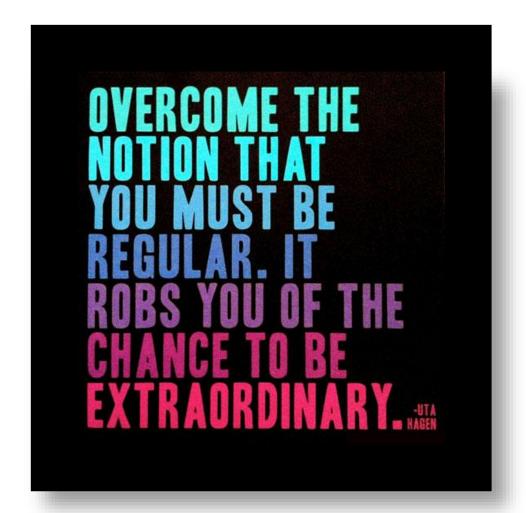
Spring 2015

Lecture 25: Limitations of DFAs (irregular languages)

cse 311: foundations of computing

Spring 2015

Lecture 25: Limitations of DFAs (irregular languages)



irregular language!

B = {binary palindromes} can't be recognized by any DFA

Why is this language not regular?

Intuition (**not a proof**):

Q: What would a DFA need to keep track of to decide the language?

A: It would need to keep track of the "first part" of the input in order to check the second part against it... but there are an infinite # of possible first parts and we only have finitely many states.

How do we prove it?

Consider the infinite set of strings

$$S = \{1, 01, 001, 0001, 00001, \dots\} = \{0^n 1 : n \ge 0\}$$

That's a nice set of first parts to have to remember but how can we argue that a DFA does the wrong thing for B?

 Show that some x ∈ B and some y ∉ B both must end up at the same state of the DFA

That state can't be

- a final state since then y is accepted: error on y
- a non-final state since then x is rejected: error on x

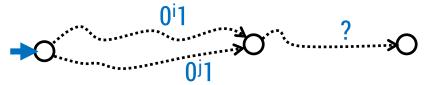
Consider the infinite set of strings

$$S = \{1, 01, 001, 0001, 00001, ...\} = \{0^n 1 : n \ge 0\}$$

Suppose we are given an arbitrary DFA M.

 Goal: Show that some x ∈ B and some y ∉ B both must end up at the same state of M

Since **S** is infinite we know that two different strings in **S** must land in the same state of **M**, call them $0^{i}1$ and $0^{j}1$ for $i\neq j$.



• That also must be true for $0^{i}1z$ and $0^{i}1z$ for any $z \in \{0,1\}^{*}!$

In particular, with $z=0^i$ we get that 0^i10^i and 0^j10^i end up at the same state of M. Since $0^i10^i \in B$ and $0^j10^i \notin B$ (because $i\neq j$), M does not recognize B. \therefore no DFA can recognize B.

showing a language L is not regular

- 1. Find an infinite set $S = \{s_0, s_1, ..., s_n, ...\}$ of string prefixes that you think will need to be remembered separately
- 2. "Let **M** be an arbitrary DFA. Since **S** is infinite and **M** is finite state there must be two strings \mathbf{s}_i and \mathbf{s}_j in **S** for some $i \neq j$ that end up at the same state of **M**."

Note: You don't get to choose which two strings $\mathbf{s_i}$ and $\mathbf{s_j}$

- 3. Find a string \mathbf{t} (typically depending on \mathbf{s}_i and/or \mathbf{s}_j) such that $\mathbf{s}_i \mathbf{t}$ is in \mathbf{L} , and $\mathbf{s}_i \mathbf{t}$ is not in \mathbf{L} and $\mathbf{s}_i \mathbf{t}$ is in \mathbf{L}
- 4. "Since s_i and s_j both end up at the same state of M, and we appended the same string t, both $s_i t$ and $s_j t$ end at the same state of M. Since $s_i t \in L$ and $s_j t \notin L$, M does not recognize L."
- 5. "Since **M** was arbitrary, no DFA recognizes **L**."

$A = \{0^n 1^n : n \ge 0\}$ cannot be recognized by any DFA

- 1. Find an infinite set $S = \{s_0, s_1, ..., s_n, ...\}$ of string prefixes that you think will need to be remembered separately
- 2. "Let **M** be an arbitrary DFA. Since **S** is infinite and **M** is finite state there must be two strings \mathbf{s}_i and \mathbf{s}_j in **S** for some $\mathbf{i} \neq \mathbf{j}$ that end up at the same state of **M**."

- Find a string t (typically depending on s_i and/or s_j) such that s_it is in L, and s_it is not in L
- 4. "Since s_i and s_j both end up at the same state of M, and we appended the same string t, both s_it and s_jt end at the same state of M. Since $s_it \in L$ and $s_jt \notin L$, M does not recognize L."
- 5. "Since **M** was arbitrary, no DFA recognizes **L**."

$A = \{0^n 1^n : n \ge 0\}$ cannot be recognized by any DFA

- 1. Find an infinite set $S=\{s_0,s_1,...,s_n,...\}$ of string prefixes that you think will need to be remembered separately $S=\{0^n:n\geq 0\}$
- 2. "Let **M** be an arbitrary DFA. Since **S** is infinite and **M** is finite state there must be two strings \mathbf{s}_i and \mathbf{s}_j in **S** for some $i \neq j$ that end up at the same state of **M**."

$$S_i, S_j$$

- 3. Find a string **t** (typically depending on \mathbf{s}_i and/or \mathbf{s}_j) such that \mathbf{s}_i **t** is in **L**, and \mathbf{s}_j **t** is not in **L**
- 4. "Since $\mathbf{s_i}$ and $\mathbf{s_j}$ both end up at the same state of \mathbf{M} , and we appended the same string \mathbf{t} , both $\mathbf{s_it}$ and $\mathbf{s_jt}$ end at the same state of \mathbf{M} . Since $\mathbf{s_it} \in \mathbf{L}$ and $\mathbf{s_jt} \notin \mathbf{L}$, \mathbf{M} does not recognize \mathbf{L} ."
- 5. "Since **M** was arbitrary, no DFA recognizes **L**."

another irregular language

 $L = \{x \in \{0, 1, 2\}^*: x \text{ has an equal number of substrings } 01 \text{ and } 10\}.$

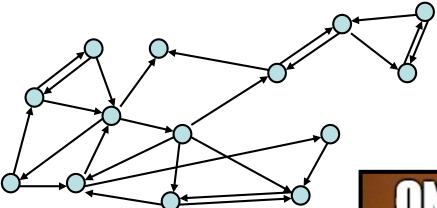
Intuition: Need to remember difference in # of 01 or 10 substrings seen, but only hard to do if these are separated by 2's.

- 1. Let $S=\{\epsilon, 012, 012012, 012012012, ...\} = \{(012)^n : n \in \mathbb{N}\}$
- 2. Let **M** be an arbitrary DFA. Since **S** is infinite and **M** is finite, there must be two strings $(012)^i$ and $(012)^j$ for some $i \neq j$ that end up at the same state of **M**.
- 3. Consider appending string $\mathbf{t} = (102)^{\mathsf{i}}$ to each of these strings. Then $(012)^{\mathsf{i}} (102)^{\mathsf{i}} \in \mathbf{L}$ but $(012)^{\mathsf{j}} (102)^{\mathsf{j}} \notin \mathbf{L}$ since $\mathsf{i} \neq \mathsf{j}$
- So (012) i (102) i and (012) j (102) end up at the same state of M since (012) and (012) do. Since (012) (102) ∈ L and (012) (102) ∉ L, M does not recognize L.
- 5. Since **M** was arbitrary, no DFA recognizes **L**.

cse 311: foundations of computing

Spring 2015

Lecture 26: Relations and directed graphs



relations

Let A and B be sets.

A binary relation from A to B is a subset of A × B

Let A be a set.

A binary relation on A is a subset of A × A

relations you already know!

```
\geq on \mathbb{N}
    That is: \{(x,y) : x \ge y \text{ and } x, y \in \mathbb{N}\}
< on \mathbb{R}
    That is: \{(x,y): x < y \text{ and } x, y \in \mathbb{R}\}
= on \Sigma^*
    That is: \{(x,y) : x = y \text{ and } x, y \in \Sigma^*\}
\subseteq on P(U) for universe U
    That is: \{(A,B): A \subseteq B \text{ and } A, B \in P(U)\}
```

$$R_1 = \{(a, 1), (a, 2), (b, 1), (b, 3), (c, 3)\}$$

$$R_2 = \{(x, y) \mid x \equiv y \pmod{5} \}$$

$$R_3 = \{(c_1, c_2) \mid c_1 \text{ is a prerequisite of } c_2\}$$

$$R_4 = \{(s, c) \mid student s had taken course c \}$$

properties of relations

Let R be a relation on A.

R is reflexive iff $(a,a) \in R$ for every $a \in A$

R is symmetric iff $(a,b) \in R$ implies $(b, a) \in R$

R is antisymmetric iff $(a,b) \in R$ and $a \neq b$ implies $(b,a) \notin R$

R is transitive iff $(a,b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$

combining relations

Let R be a relation from A to B. Let S be a relation from B to C.

The composition of R and S, S • R is the relation from A to C defined by:

$$S \circ R = \{(a, c) \mid \exists b \text{ such that } (a,b) \in R \text{ and } (b,c) \in S\}$$

Intuitively, a pair is in the composition if there is a "connection" from the first to the second.

 $(a,b) \in Parent iff b is a parent of a$ $(a,b) \in Sister iff b is a sister of a$

When is $(x,y) \in Sister \circ Parent?$

When is $(x,y) \in Parent \circ Sister$?

Using the relations: Parent, Child, Brother, Sister, Sibling, Father, Mother, Husband, Wife express:

Uncle: b is an uncle of a

Cousin: b is a cousin of a

Using the relations: Parent, Child, Brother, Sister, Sibling, Father, Mother, Husband, Wife express:

Uncle: b is an uncle of a

Uncle = Brother • Parent

Cousin: b is a cousin of a

Cousin = Child • Sibling • Parent

powers of a relation

$$R^2 = R \circ R$$

= $\{(a,c) \mid \exists b \text{ such that } (a,b) \in R \text{ and } (b,c) \in R \}$

$$R^0 = \{(a, a) \mid a \in A\}$$

$$R^1 = R$$

$$R^{n+1} = R^n \circ R$$

powers of a relation

$$R^2 = R \circ R$$

= $\{(a,c) \mid \exists b \text{ such that } (a,b) \in R \text{ and } (b,c) \in R \}$
Parent² = GrandParent

$$R^0 = \{(a, a) \mid a \in A\}$$
 R^0 is always equality

$$R^1 = R$$

$$R^{n+1} = R^n \circ R$$

matrix represenation

Relation R on $A = \{a_1, \dots, a_p\}$

$$m_{ij} = \begin{cases} 1 & \text{if } (a_i, a_j) \in R, \\ 0 & \text{if } (a_i, a_j) \notin R. \end{cases}$$

 $\{(1, 1), (1, 2), (1, 4), (2,1), (2,3), (3,2), (3,3), (4,2), (4,3)\}$

	1	2	3	4
1	1	1	0	1
2	1	0	1	0
3	0	1	1	0
4	0	1	1	0