
cse 311: foundations of computing

Spring 2015
Lecture 24:  DFAs, NFAs, and regular expressions



highlights

• FSMs with output at states

• State minimization
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Lemma:  The language recognized by a DFA is the set of
strings x that label some path from its start state to one
of its final states



nondeterministic finite automaton (NFA)

• Graph with start state, final states, edges labeled by symbols 
(like DFA) but

– Not required to have exactly 1 edge out of each state labeled by 
each symbol--- can have 0 or >1

– Also can have edges labeled by empty string ɛ

• Definition: x is in the language recognized by an NFA if and 
only if x labels a path from the start state to some final state
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building an NFA

binary strings that have
- an even # of 1’s
- or contain the substring 111 or 1000



Theorem: For any set of strings (language) 𝐴 described by a 
regular expression, there is an NFA that recognizes 𝐴.  

Proof idea:   Structural induction based on the recursive 
definition of regular expressions...

NFAs and regular expressions

𝐴 ∪ 𝐵

𝐴𝐵

𝐴∗



build an NFA for (01 1)*0



solution
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NFAs vs. DFAs

Every DFA is an NFA

– DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages?



NFAs vs. DFAs

Every DFA is an NFA

– DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages?   No!

Theorem:  For every NFA there is a DFA that recognizes exactly 
the same language.



conversion of NFAs to DFAs

Proof Idea:

– The DFA keeps track of ALL the states that the part of the input 
string read so far can reach in the NFA

– There will be one state in the DFA for each subset of states of 
the NFA that can be reached by some string



conversion of NFAs to a DFAs

New start state for DFA

– The set of all states reachable from the start state of the NFA 
using only edges labeled ɛ
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conversion of NFAs to a DFAs

For each state of the DFA corresponding to a set S of states of 
the NFA and each symbol s

– Add an edge labeled s to state corresponding to T, the set of 
states of the NFA reached by 

starting from some state in S, then
following one edge labeled by s, and
then following some number of edges labeled by ɛ

– T will be  if no edges from S labeled s exist
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conversion of NFAs to a DFAs

Final states for the DFA

– All states whose set contain some final state of the NFA

a,b,c,e
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example: NFA to DFA
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example: NFA to DFA
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example: NFA to DFA
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example: NFA to DFA
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example: NFA to DFA

c

a

b

0

ɛ

0,1

1

0

a,b

0

c 

1

b 

b,c

1

0



10

NFA DFA



example: NFA to DFA
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example: NFA to DFA
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example: NFA to DFA
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exponential blow-up in simulating mondeterminism

• In general the DFA might need a state for every subset of 
states of the NFA

– Power set of the set of states of the NFA

– n-state NFA yields DFA with at most 2n states

– We saw an example where roughly 2n is necessary

Is the nth char from the end a 1?

• The famous “P=NP?” question asks whether a similar blow-up 
is always necessary to get rid of nondeterminism for 
polynomial-time algorithms



1 in third position from end
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1 in third position from end
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1 in third position from end
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DFAs ≡ regular expressions

We have shown how to build an optimal DFA for every regular 
expression

– Build NFA

– Convert NFA to DFA using subset construction

– Minimize resulting DFA

Theorem:  A language is recognized by a DFA if and

only if it has a regular expression.

We show the other direction of the proof at the end of these 
lecture slides.



languages and machines!
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languages and machines!

All

Context-Free

Regular

Finite

{001, 10, 12}

0*

Warmup:
All finite 
languages are 
regular.
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DFAs recognize any finite language

Exercise: Hard code it into the DFA.
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an interesting language

𝐿 = {𝒙 ∊ {0, 1}
∗
: 𝒙 has an equal number of substrings 01 and 10}.

L is infinite.

L is regular.



an interesting regular language

𝐿 = {𝒙 ∊ {0, 1}
∗
: 𝒙 has an equal number of substrings 01 and 10}.

L is infinite.

L is regular.
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??? Main Event:
Prove there is a 
context-free
language that 
isn’t regular.
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DFAs ≡ regular expressions

Theorem:  A language is recognized by a DFA if and

only if it has a regular expression

Proof: Last class:  RegExp → NFA → DFA

Now:  NFA → RegExp

(Enough to show this since every DFA is also an NFA.)



generalized NFAs 

• Like NFAs but allow

– Parallel edges

– Regular Expressions as edge labels

NFAs already have edges labeled ɛ or a

• An edge labeled by A can be followed by reading a string 
of input chars that is in the language represented by A

• A string x is accepted iff there is a path from start to final 
state labeled by a regular expression whose language 
contains x



starting from an NFA

Add new start state and final state

ɛ

ɛ

ɛ

A

Then eliminate original states one by one, keeping 
the same language, until it looks like:

Final regular expression will be A



only two simplification rules

• Rule 1:  For any two states q1 and q2 with parallel edges 
(possibly q1=q2), replace

• Rule 2: Eliminate non-start/final state q3 by replacing all

for every pair of states q1, q2 (even if q1=q2)
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C AB*Cq1 q3 q2 q1
q2by



converting an NFA to a regular expression

Consider the DFA for the mod 3 sum

– Accept strings from {0,1,2}* where the digits mod 3 sum of the 
digits is 0
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splicing out a node

Label edges with regular expressions
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t0→t1→t0 :   10*2
t0→t1→t2 :   10*1
t2→t1→t0 :   20*2
t2→t1→t2 :   20*1
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finite automaton without t1

t0 t2
R1

R1:   0 ∪ 10*2
R2:   2 ∪ 10*1
R3:   1 ∪ 20*2
R4:   0 ∪ 20*1

R5:   R1 ∪ R2R4*R3

R4R2

R3

t0

R5

Final regular expression:
(0 ∪ 10*2 ∪ (2 ∪ 10*1)(0 ∪ 20*1)*(1 ∪ 20*2))*
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