
5/18/2015

1

cse 311: foundations of computing

Spring 2015
Lecture 21: Context-free grammars and finite state machines

limitations of regular expressions

• Not all languages can be specified by regular expressions

• Even some easy things like

– Palindromes

– Strings with equal number of 0’s and 1’s

• But also more complicated structures in programming languages

– Matched parentheses

– Properly formed arithmetic expressions

– etc.

context-free grammars

• A Context-Free Grammar (CFG) is given by a finite set of
substitution rules involving

– A finite set V of variables that can be replaced

– Alphabet  of terminal symbols that can’t be replaced

– One variable, usually S, is called the start symbol

• The rules involving a variable A are written as

A  w1 | w2 | ⋯ | wk

where each wi is a string of variables and terminals:

wi ∈ (V )*

how CFGs generate strings

• Begin with start symbol S

• If there is some variable A in the current string you can
replace it by one of the w’s in the rules for A
– A  w1 | w2 | ⋯ | wk

– Write this as xAy⇒ xwy

– Repeat until no variables left

• The set of strings the CFG generates are all strings
produced in this way that have no variables

example

Example: S  0S0 | 1S1 | 0 | 1 | 

Example: S  0S | S1 | 

example

Grammar for 0𝑛1𝑛: 𝑛 ≥ 0
(all strings with same # of 0’s and 1’s with all 0’s before 1’s)

Example: S  (S) | SS | 

5/18/2015

2

simple arithmetic expressions

E  E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4

| 5 | 6 | 7 | 8 | 9

Generate (2∗x) + y

Generate x+y∗z in two fundamentally different ways

parse trees

Suppose that grammar G generates a string x
A parse tree of x for G has

– Root labeled S (start symbol of G)

– The children of any node labeled A are labeled by symbols of w
left-to-right for some rule A  w

– The symbols of x label the leaves ordered left-to-right

S  0S0 | 1S1 | 0 | 1 | 
S

0 0S

S1 1

1

Parse tree of 01110:

CFGs and recursively-defined sets of strings

• A CFG with the start symbol S as its only variable
recursively defines the set of strings of terminals that S
can generate

• A CFG with more than one variable is a simultaneous
recursive definition of the sets of strings generated by
each of its variables

– Sometimes necessary to use more than one

building precedence in simple arithmetic expressions

• E – expression (start symbol)

• T – term F – factor I – identifier N - number

E  T | E+T

T  F | F∗T

F  (E) | I | N

I  x | y | z

N  0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Backus-Naur form (same as CFG)

BNF (Backus-Naur Form) grammars

– Originally used to define programming languages

– Variables denoted by long names in angle brackets, e.g.

<identifier>, <if-then-else-statement>,

<assignment-statement>, <condition>

∷= used instead of 

BNF for C

5/18/2015

3

parse trees

Back to middle school:

<sentence>∷=<noun phrase><verb phrase>

<noun phrase>∷==<article><adjective><noun>

<verb phrase>∷=<verb><adverb>|<verb><object>

<object>∷=<noun phrase>

Parse:

The yellow duck squeaked loudly

The red truck hit a parked car

finite state machines

• States

• Transitions on inputs

• Start state and final states

• The language recognized by a machine is the set of
strings that reach a final state

State 0 1

s0 s0 s1

s1 s0 s2

s2 s0 s3

s3 s3 s3

s0 s2 s3s1

111

0,1

0

0

0

applications of FSMs (aka finite automata)

• Implementation of regular expression matching in
programs like grep

• Control structures for sequential logic in digital circuits

• Algorithms for communication and cache-coherence
protocols

– Each agent runs its own FSM

• Design specifications for reactive systems

– Components are communicating FSMs

applications of FSMs (aka finite automata)

• Formal verification of systems

– Is an unsafe state reachable?

• Computer games

– FSMs provide worlds to explore

• Minimization algorithms for FSMs can be extended to
more general models used in

– Text prediction

– Speech recognition

what language does this machine recognize?

s0

s2 s3

s1

1

1

1

1

0

0

0

0

can we recognize these languages with DFAs?

• ∅

• ∑*

• { x ∊{0,1}* : len(x) > 1}

5/18/2015

4

FSM that accepts binary strings with a 1 three positions from the end strings over {0, 1, 2}*

M1: Strings with an even number of 2’s

M2: Strings where the sum of digits mod 3 is 0

s0 s1

t0 t2

t1

both: even number of 2’s and sum mod 3 = 0

s0t0

s1t0

s1t2

s0t1

s0t2

s1t1

DFA that accepts strings of a’s, b’s, c’s with no more than 3 a’s

3 bit shift register

001 011

111

110

101010000

100

1

1
1 0 1

1

1

1

00
0

1

0

0

00

“Remember the last three bits”

001 011

111

110

101010000

100

1

1
1 0 1

1

1

1

00
0

1

0

0

00

10

00 01 10 11

1
1

1

0

0 0

0 0 0 0
1

1

1

1

