cse 311: foundations of computing

Spring 2015
Lecture 21: Context-free grammars and finite state machines

TR AP .

UM o ijmm
s (gedth B
e

context-free grammars

« A Context-Free Grammar (CFG) is given by a finite set of
substitution rules involving

— Afinite set V of variables that can be replaced
— Alphabet X of terminal symbols that can't be replaced
— One variable, usually S, is called the start symbol

* The rules involving a variable A are written as

AW | Wyl |w
where each w; is a string of variables and terminals:
we(VUI)

example

Example: S—>0S0|1S1|0|1]¢

Example: S—>0S|S1|e

5/18/2015

limitations of regular expressions

Not all languages can be specified by regular expressions

+ Even some easy things like
— Palindromes

— Strings with equal number of 0's and 1's
But also more complicated structures in programming languages
— Matched parentheses

— Properly formed arithmetic expressions
— etc.

how CFGs generate strings

* Begin with start symbol S

« Ifthere is some variable A in the current string you can
replace it by one of the w's in the rules for A
— Ao w | Wyl |wy
— Writethisas xAy = xwy
— Repeat until no variables left

« The set of strings the CFG generates are all strings
produced in this way that have no variables

example

Grammar for {0"1™:n > 0}

(all strings with same # of 0's and 1's with all 0's before 1's)

Example: S—(S)|SS|e

simple arithmetic expressions

E— E+E|E<E[(E)[x|y|z|0[1]2]34
[5/6171819

Generate (2+x)+y

Generate x+y=z in two fundamentally different ways

CFGs and recursively-defined sets of strings

« A CFG with the start symbol S as its only variable
recursively defines the set of strings of terminals that S
can generate

A CFG with more than one variable is a simultaneous
recursive definition of the sets of strings generated by
each of its variables

— Sometimes necessary to use more than one

Backus-Naur form (same as CFG)

BNF (Backus-Naur Form) grammars

— Originally used to define programming languages
— Variables denoted by long names in angle brackets, e.g.
<identifier>, <if-then-else-statement>,
<assignment-statement>, <condition>
::= used instead of —

parse trees

5/18/2015

Suppose that grammar G generates a string x
A parse tree of x for G has
— Root labeled S (start symbol of G)

— The children of any node labeled A are labeled by symbols of w
left-to-right for some rule A — w

— The symbols of x label the leaves ordered left-to-right
S

S—>0S0|1S1|0|1]|¢ /l\

0SSO0

Parsetreeof 01110: { g
|
1

building precedence in simple arithmetic expressions

* E—expression (start symbol)

* T—term F—factor |-identifier N -number
E — T|E+T

T > F|FT

F S (@E|IN

I > x|yl|z

N ->0|1]2|3]4|5|6|7|8]9

BNF for C

"2" expression ":* conditional-expression)7

parse trees

Back to middle school:

<sentence>::=<noun phrase><verb phrase>
<noun phrase>::==<article><adjective><noun>
<verb phrase>::=<verb><adverb>|<verb><object>
<object>::=<noun phrase>

Parse:

The yellow duck squeaked loudly
The red truck hit a parked car

applications of FSMs (aka finite automata)

finite state machines

5/18/2015

Implementation of regular expression matching in
programs like grep

Control structures for sequential logic in digital circuits
Algorithms for communication and cache-coherence
protocols

— Each agent runs its own FSM

Design specifications for reactive systems

— Components are communicating FSMs

what language does this machine recognize?

« States
« Transitions on inputs
- Start state and final states

« The language recognized by a machine is the set of
strings that reach a final state

State 0 1
So So Nl
$ So Sz
Sz So S3
S3 S3 S3

applications of FSMs (aka finite automata)

Formal verification of systems

— Is an unsafe state reachable?

Computer games

— FSMs provide worlds to explore

Minimization algorithms for FSMs can be extended to
more general models used in

— Text prediction

— Speech recognition

can we recognize these languages with DFAs?

. Z*
o {x€{0,1}*: len(x) > 1}

FSM that accepts binary strings with a 1 three positions from the end

5/18/2015

strings over {0, 1, 2}*

both: even number of 2's and sum mod 3 =0

“Remember the last three bits”

3 bit shift register

M;: Strings with an even number of 2's

>©® ®

M,: Strings where the sum of digits mod 3 is 0

®
>© ®

DFA that accepts strings of a’s, b’s, ¢'s with no more than 3 a’s

