cse 311: foundations of computing

Spring 2015
Lecture 21: Context-free grammars and finite state machines

.@m_ 62{:6)\)\) .
~ F % o N

KD

limitations of reqular expressions

« Not all languages can be specified by regular expressions

 Even some easy things like 00 - 16 l | .- \

— Palindromes % —

— Strings with equal number of 0's and 1's «

» But also more complicated structures in programming languages
— Matched parentheses
— Properly formed arithmetic expressions
— etc.

context-free grammars

« A Context-Free Grammar (CFG) is given by a finite set of
substitution rules involving

— A finite set V of variables that can be replaced
— Alphabet X of terminal symbols that can't be replaced
— One variable, usually S, is called the start symbol

* The rules involving a variable A are written as
A—w,| wy|---|w,
where each w; is a string of variables and terminals:
weVul)

how CFGs generate strings

* Begin with start symbol S

« |f there is some variable A in the current string you can
replace it by one of the w's in the rules for A
— A w | wy |- w |W
— Write thisas xAy = xwy
— Repeat until no variables left

 The set of strings the CFG generates are all strings
produced In this way that have no variables

example

Example: S—>0S0|1S1|0|1]|¢

S— ¢ S — 0€0O
ST 0 —> DISLG
S— L1 o 0lOoL6 o LI

— O b s Lo
Example: @l

5‘_>©S___9031 —> O

L= T

example

Grammar for {01": n > 0} S
(all strings with same # of 0’s and 1's with all 0's before 1's) VARN

S— 034 > F
§— &

Example: S —(S)|SS|¢ /) = {(.\}

(HCCHYU))

S — 39
5 (89S — O — O (8
—> (D (SS) —«»(3((95)

5 () ((HDB)
— (3((3(5)) — OY(OO)

simple arithmetic expressions

S—

E—> E+E|E<E|(E)|x|y|z|0]1/2]3]4 /K
N

Lﬁ/\)

z_t/t)»v«g)

\
(24N + Y

——

) (F=€) 9
Generate x+y=z Iin two fundamentally different ways
E — T +E 5 XL D < £HE 3 XHgy¥rE S X4+ %2

L 6% = E¥Z o CHe*2 > k€42
- X4 ZT -

parse trees

Suppose that grammar G generates a string x
A parse tree of x for G has
— Root labeled S (start symbol of G)

— The children of any node labeled A are labeled by symbols of w
left-to-right for some rule A — w

— The symbols of x label the leaves ordered left-to-right

S
S >0S0|1S1|0]|1]¢ /1\
0 S 0

Parsetreeof 01110: 1 ¢ 1

1

CFGs and recursively-defined sets of strings

* A CFG with the start symbol S as its only variable
recursively defines the set of strings of terminals that S
can generate

e A CFG with more than one variable is a simultaneous
recursive definition of the sets of strings generated by
each of its variables

— Sometimes necessary to use more than one

building precedence in simple arithmetic expressions

—_

£E—=>"1 — =71 (X49)42
 E - expression (start symbol)

e T—term F-—factor |-identifier N - number
E — T|E+T
T — F|FT X*—j{%
F > (E)|I|N
| —> x|y]|z
N ->0|1]2|3|4|5|6|7|8]|°9

== [T :;JfY*x < ?‘,\f—"*
- T+T W 2 X+ X£*T
- F T T

— T 4+ \ s X477 = X+ i+t 2 x + F+F

Backus-Naur form (same as CFG)

BNF (Backus-Naur Form) grammars

— Oniginally used to define programming languages
— Variables denoted by long names in angle brackets, e.g.
<identifier>, <if-then-else-statement>,
<assignment-statement>, <condition>
::= used instead of —

BNF for C

statement:
((identifier | "case"™ constant—-expression | "default™) ":")¥*
(expression? ";" |
block |
"if" " (" expression ")" statement |
"if™ " (" expression ")" statement "else™ statement |
"switch™ " (" expression ")" statement |
"while"™ " (" expression ")}" statement |
"do" statement "while™ " (" expression ")}" ";" |
"for™ " (" expression? ";" expression? ";" expression? ")" statement |
"goto" identifier ";™ |
"continue™ ";" |
"break™ ";" |

L LI |

"return" expression? ";

block: "{" declaration* statement* ™}"

eXpression:
assignment—-expression

assignment—-expression: |

unary-expression (
IfI:'" | TI*:TI | Ifllll,l':'fl | m %:TI | 'fl_l_:'" | '"_:'fl | TI{{:TI | TI}}:TI | mn &:TI |

L LI —) | Ll | — T

)

}* conditional-expression

conditional-expression:
logical-OR-expression ("2" expression ":" conditional-expression }7?

parse trees

Back to middle school:
<sentence>::=<noun phrase><verb phrase>
<noun phrase>::==<article><adjective><noun>
<verb phrase>::=<verb><adverb>|<verb><object>

<object>::=<noun phrase> <w5:»u D%
. pd ~
Parse: P> 2P

The yellow duck squeaked loudly - |

The red truck hit a parked car . yd~ olos / \
Qv <AD

l |
) % ml,_(} (uv odb

finite state machines

States €
Transitions on inputs > C)
Start state and final states O

The language recognized by a machine is the set of
strings that reach a final state A0 6] o

State 0 1
S S 51
S S S
S S S3
S3 S3 S3

applications of FSMs (aka finite automata)

Implementation of reqular expression matching in
programs like grep

Control structures for sequential logic in digital circuits

Algorithms for communication and cache-coherence
protocols
— Each agent runs its own FSM

Design specifications for reactive systems
— Components are communicating FSMs

applications of FSMs (aka finite automata)

 Formal verification of systems
— Is an unsafe state reachable?

« Computer games
— FSMs provide worlds to explore
 Minimization algorithms for FSMs can be extended to
more general models used In
— Text prediction
— Speech recognition

what language does this machine recognize?

) 1
ﬁOM iﬁfo(s - S
oddd F 1S
1 y
A 0 1 4 0 J,

o) 0
Voo v
H—E
1

can we recognize these languages with DFAS?

o Z*
« {x€e{0,1}*: len(x)> 1}

FSM that accepts binary strings with a 1 three positions from the end

strings over {0, 1, 2}*

M,: Strings with an even number of 2's

>®) ()

M,: Strings where the sum of digits mod 3 1s 0

O
>® G

both: even number of 2's and sum mod 3=0

DFA that accepts strings of a’s, b’s, ¢'s with no more than 3 a's

“Remember the last three bits” 3 bit shift reqgister

10

101

