E‘-‘i’ cse 311: foundations of computing

Spring 2015
Lecture 20: Regular expressions and context-free grammars

UM o ijmﬁ!
s (gedth

regular expressions

5/14/2015

languages: sets of strings

Regular expressions over ©

* Basis:
@, € are regular expressions
ais aregular expression forany a €
* Recursive step:
— If Aand B are regular expressions then so are:
(AUB)
(AB)
A*

examples

Sets of strings that satisfy special properties are called languages.

Examples:
— English sentences
— Syntactically correct Java/C/C++ programs
— =* = All strings over alphabet =
— Palindromes over £
— Binary strings that don't have a 0 after a 1
— Legal variable names, keywords in Java/C/C++
— Binary strings with an equal # of 0's and 1's

each regular expression is a “pattern”

. 001*

. 0H*

< (0UT)OOU T

. (0*]*)*

< (QUT*0T10 (0 U T)*

« (00U 11)* (01010 L 10001)(0 L 1)*

& matches the empty string
a matches the one character string a

(A L B) matches all strings that either A matches or B
matches (or both)

(AB) matches all strings that have a first part that A matches
followed by a second part that B matches

A* matches all strings that have any number of strings (even
0) that A matches, one after another

regular expressions in practice

Used to define the “tokens”: e.g., legal variable names,
keywords in programming languages and compilers

Used in grep, a program that does pattern matching searches
in UNIX/LINUX

Pattern matching using regular expressions is an essential
feature of PHP

We can use regular expressions in programs to process
strings!

5/14/2015

regular expressions in Java

matching email addresses: RFC 822

« Pattern p = Pattern.compile("a*b");
* Matcher m = p.matcher("aaaaab");
* boolean b = m.matches();
[01] aOoral “startofstring $ end of string
[0-9] anysingledigit \. period \, comma \- minus
any single character
ab a followed by b (AB)

(alb) aorb (A UB)
a? zero or one of a (AU E)
a* zeroor moreofa A*

a+ oneormoreofa AA*
* eg A\-+12[0-91*(\.|\,)?[0-9]+$
General form of decimal number e.g. 9.12 or -9,8 (Europe)

-, ; 4 i o What?t _m?‘ne‘smdcommems?

more examples

limitations of regular expressions

+ All binary strings that have an even # of 1's

Not all languages can be specified by reqular expressions

+ Even some easy things like
— Palindromes
— Strings with equal number of 0's and 1's

. . , . « But also more complicated structures in programming languages
« All binary strings that don’t contain 101 — Matched parentheses

— Properly formed arithmetic expressions
— etc.

context-free grammars

how CFGs generate strings

« A Context-Free Grammar (CFG) is given by a finite set of * Begin with start symbol S
substitution rules involving

— Afinite set V of variables that can be replaced « If there is some variable A in the current string you can

— Alphabet = of terminal symbols that can't be replaced repl;]ce it bly onle °|f the w's in the rules for A
B . : — Ao w | Wyl |w
One variable, usually S, is called the start symbol — Writethisas xAy = xwy
. . . . — Repeat until no variables left
+ The rules involving a variable A are written as

A—>wi| Wyl w,

« The set of strings the CFG generates are all strings
where each w; is a string of variables and terminals: produced in this way that have no variables
weVuI)

example

Example: S—>0S0|1S1|0]|1]¢

Example: S—>0S|S1]¢

simple arithmetic expressions

E— E+E|ExE|(E)|x|y|z|0]1]2]3]4
[5/16171819

Generate (2%x) +y

Generate x+y=z in two fundamentally different ways

CFGs and recursively-defined sets of strings

* A CFG with the start symbol S as its only variable
recursively defines the set of strings of terminals that S
can generate

* A CFG with more than one variable is a simultaneous
recursive definition of the sets of strings generated by
each of its variables

— Sometimes necessary to use more than one

example

5/14/2015

Grammar for {0"1™:n > 0}
(all strings with same # of 0's and 1's with all 0's before 1's)

Example: S—(S)|SS|¢e

parse trees

Suppose that grammar G generates a string x
A parse tree of x for G has
— Root labeled S (start symbol of G)

— The children of any node labeled A are labeled by symbols of w
left-to-right for some rule A — w

— The symbols of x label the leaves ordered left-to-right

S
S—>0S0|1S1|0[1]¢ /l\
0SSO0

Parsetreeof 01110: { g
|
1

building precedence in simple arithmetic expressions

* E—expression (start symbol)

* T—term F—factor |-identifier N - number
— T|E+T

F | F+T

EIIIN

xlylz

E
T
F
|
N >0]1]2]3]4]5|6]718]9

N
N
N
N

Backus-Naur form (same as CFG)

BNF (Backus-Naur Form) grammars

— Originally used to define programming languages
— Variables denoted by long names in angle brackets, e.g.
<identifier>, <if-then-else-statement>,
<assignment-statement>, <condition>
1= used instead of —

parse trees

Back to middle school:
<sentence>::=<noun phrase><verb phrase>
<noun phrase>::==<article><adjective><noun>
<verb phrase>::=<verb><adverb>|<verb><object>
<object>::=<noun phrase>

Parse:
The yellow duck squeaked loudly
The red truck hit a parked car

" constant-expressicn | "default™) "i")*
nt "else” statement |
"i" expression? ") " statement |
¥
block: "{" declaratisn® statement® "}"
me=t | mec=t | tan=t | va=t
y
}* conditicnal-expression
conditional-expression:
logical-OR-sxpression ("?" expression ":* conditional-sxpression)7

