
cse 311: foundations of computing

Spring 2015
Lecture 20: Regular expressions and context-free grammars

cse 311: foundations of computing

Spring 2015
Lecture 20: Regular expressions and context-free grammars

languages: sets of strings

Sets of strings that satisfy special properties are called languages.

Examples:

– English sentences

– Syntactically correct Java/C/C++ programs

– * = All strings over alphabet

– Palindromes over

– Binary strings that don’t have a 0 after a 1

– Legal variable names, keywords in Java/C/C++

– Binary strings with an equal # of 0’s and 1’s

regular expressions

Regular expressions over

• Basis:

, are regular expressions

a is a regular expression for any a

• Recursive step:

– If A and B are regular expressions then so are:

(A B)

(AB)

A*

each regular expression is a “pattern”

 matches the empty string

a matches the one character string a

(A B) matches all strings that either A matches or B
matches (or both)

(AB) matches all strings that have a first part that A matches
followed by a second part that B matches

A* matches all strings that have any number of strings (even
0) that A matches, one after another

examples

• 001*

• 0*1*

• (0 1)0(0 1)0

• (0*1*)*

• (0 1)* 0110 (0 1)*

• (00 11)* (01010 10001)(0 1)*

regular expressions in practice

• Used to define the “tokens”: e.g., legal variable names,
keywords in programming languages and compilers

• Used in grep, a program that does pattern matching searches
in UNIX/LINUX

• Pattern matching using regular expressions is an essential
feature of PHP

• We can use regular expressions in programs to process
strings!

regular expressions in Java

• Pattern p = Pattern.compile("a*b");

• Matcher m = p.matcher("aaaaab");

• boolean b = m.matches();

[01] a 0 or a 1 ^ start of string $ end of string

[0-9] any single digit \. period \, comma \- minus

. any single character

ab a followed by b (AB)

(a|b) a or b (A B)
a? zero or one of a (A ℇ)
a* zero or more of a A*

a+ one or more of a AA*

• e.g. ^[\-+]?[0-9]*(\.|\,)?[0-9]+$

General form of decimal number e.g. 9.12 or -9,8 (Europe)

matching email addresses: RFC 822

more examples

• All binary strings that have an even # of 1’s

• All binary strings that don’t contain 101

limitations of regular expressions

• Not all languages can be specified by regular expressions

• Even some easy things like

– Palindromes

– Strings with equal number of 0’s and 1’s

• But also more complicated structures in programming languages

– Matched parentheses

– Properly formed arithmetic expressions

– etc.

context-free grammars

• A Context-Free Grammar (CFG) is given by a finite set of
substitution rules involving

– A finite set V of variables that can be replaced

– Alphabet of terminal symbols that can’t be replaced

– One variable, usually S, is called the start symbol

• The rules involving a variable A are written as

A w1 | w2 | ⋯ | wk

where each wi is a string of variables and terminals:

wi ∈ (V)*

how CFGs generate strings

• Begin with start symbol S

• If there is some variable A in the current string you can
replace it by one of the w’s in the rules for A
– A w1 | w2 | ⋯ | wk

– Write this as xAy ⇒ xwy

– Repeat until no variables left

• The set of strings the CFG generates are all strings
produced in this way that have no variables

example

Example: S 0S0 | 1S1 | 0 | 1 |

Example: S 0S | S1 |

example

Grammar for 0𝑛1𝑛: 𝑛 ≥ 0

(all strings with same # of 0’s and 1’s with all 0’s before 1’s)

Example: S (S) | SS |

simple arithmetic expressions

E E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4

| 5 | 6 | 7 | 8 | 9

Generate (2∗x) + y

Generate x+y∗z in two fundamentally different ways

parse trees

Suppose that grammar G generates a string x
A parse tree of x for G has

– Root labeled S (start symbol of G)

– The children of any node labeled A are labeled by symbols of w
left-to-right for some rule A w

– The symbols of x label the leaves ordered left-to-right

S 0S0 | 1S1 | 0 | 1 |
S

0 0S

S1 1

1

Parse tree of 01110:

CFGs and recursively-defined sets of strings

• A CFG with the start symbol S as its only variable
recursively defines the set of strings of terminals that S
can generate

• A CFG with more than one variable is a simultaneous
recursive definition of the sets of strings generated by
each of its variables

– Sometimes necessary to use more than one

building precedence in simple arithmetic expressions

• E – expression (start symbol)

• T – term F – factor I – identifier N - number

E T | E+T

T F | F∗T

F (E) | I | N

I x | y | z

N 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Backus-Naur form (same as CFG)

BNF (Backus-Naur Form) grammars

– Originally used to define programming languages

– Variables denoted by long names in angle brackets, e.g.

<identifier>, <if-then-else-statement>,

<assignment-statement>, <condition>

∷= used instead of

BNF for C

parse trees

Back to middle school:

<sentence>∷=<noun phrase><verb phrase>

<noun phrase>∷==<article><adjective><noun>

<verb phrase>∷=<verb><adverb>|<verb><object>

<object>∷=<noun phrase>

Parse:

The yellow duck squeaked loudly

The red truck hit a parked car

