cse 311: foundations of computing

Spring 2015
Lecture 19: Structural induction and regular expressions

0w ot THE KER || BUT T e D e TS
AR T ST HAVE LD T 260 B o s Lo P
| e, 2 e || ER on IOONY et

e e gt inchiien
== R et

oo || (e

& i s Ll
i

T
s 1 ek 5

5/13/2015

* An alphabet % is any finite set of characters.
eg. X={01}orX={4,B,C,..X,Y,Z}or
=

« The set =* of strings over the alphabet = is defined by
— Basis: € € =* (€ is the empty string)
— Recursive: if w € £* a € I, thenwa € T*

Length:
len (€) =
len (wa)

=1+len(w); forw €Z*,a €
Reversal:

eR=¢

wa)R = awR forw e ¥ aeX

Concatenation:

x o= xforx e T*
x ewa=(x e w)aforx,we*ael

structural induction for strings

Let S be a set of strings over £ = {a, b} defined by
Basis:a € §
Recursive:
Ifw e Sthenwa € Sandwba € S
IfuveSthenuv e s

Claim: If w € S then w has more a's than b's.

How to prove V x € S, P(x) is true:
Base Case: Show that P(w) is true for all specific elements
u of S mentioned in the Basis step
Inductive HYpothesis: Assume that P is true for some
arbitrary values of each of the existing named elements
mentioned in the Recursive step
Inductive Step: Prove that P(w) holds for each of the new
elements w constructed in the Recursive step usmg the
named elements mentioned in the Inductive Hypothesis

Conclude thatv x € S, P(x)

proof continued?




prove: len(x - y) = len(x) + len(y) forall x,y € £*

Let P(y) be “len(x - y) = len(x) + len(y) forall x € =*

5/13/2015

=1 +size(T,) + size(T,)

)=1+ max{height(T;), height(T,)}

languages: sets of strings

* Basis:
* Recursive step:

+ is arooted binary tree

size vs. height

Sets of strings that satisfy special properties are called languages.

Examples:
— English sentences
— Syntactically correct Java/C/C++ programs
— =* = All strings over alphabet =
— Palindromes over
— Binary strings that don’t have a 0 after a 1
— Legal variable names, keywords in Java/C/C++
— Binary strings with an equal # of 0's and 1's

Claim: For every rooted binary tree T, size(T) < 2height(M+1 _ 1

regular expressions

Regular expressions over

« Basis:

@, & are regular expressions
ais aregular expression forany a € =

* Recursive step:
— If A and B are regular expressions then so are:
(AUB)
(AB)
A*



each regular expression is a “pattern”

& matches the empty string
a matches the one character string a
(AUB)
matches all strings that either A matches or B matches (or both)
(AB)

matches all strings that have a first part that A matches followed
by a second part that B matches

A*

matches all strings that have any number of strings (even 0) that
A matches, one after another

regular expressions in practice

« Used to define the “tokens”: e.g., legal variable names,
keywords in programming languages and compilers

* Used in grep, a program that does pattern matching
searches in UNIX/LINUX

« Pattern matching using regular expressions is an essential
feature of PHP

» We can use regular expressions in programs to process
strings!

matching email addresses: RFC 822

\eD)

‘No‘nested comments?

AAMEWTIANL ¢

examples

5/13/2015

« 001*

o 041

e (0unoOU IO
. (0*1*)*

< (U T)*0110(0UL 1)*

- (00U 11)* (07070 L 10001)(0 L 1)*

regular expressions in java

« Pattern p = Pattern.compile("a*b");
 Matcher m = p.matcher("aaaaab");
« boolean b = m.matches();
[01] aOoral ~startofstring $ end ofstring
[0-9] anysingledigit \. period \, comma \- minus
any single character

ab  afollowed by b (AB)
(alby aorb (AUB)
a?  zerooroneofa (AU

a* zero or more of a A*
a+ one or more of a AA*
e eg. A\-+12[0-91*(\.|\,)?[0-9]+$
General form of decimal number e.g. 9.12 or -9,8 (Europe)

more examples

« All binary strings that have an even # of 1's

« All binary strings that don’t contain 101



limitations of regular expressions

Not all languages can be specified by regular expressions
Even some easy things like

— Palindromes

— Strings with equal number of 0's and 1's

But also more complicated structures in programming languages
— Matched parentheses

— Properly formed arithmetic expressions
— etc.

5/13/2015



