cse 311: foundations of computing

Spring 2015 Lecture 19: Structural induction and regular expressions

• An *alphabet* Σ is any finite set of characters.

e.g. $\Sigma = \{0,1\}$ or $\Sigma = \{A, B, C, ..., X, Y, Z\}$ or

1		28	L	95		153	Ö	186		219	
2	•	29	**	96	-	154	Ü	187	٦	220	
3	۷	30 🔺		97-122 a-z		155 ¢	188		221		
4	٠	31		123	{	156	£	189	В	222	1
5	*	32 (s	pace)	124	ì	157	¥	190	3	223	
6	•	33	Í.	125) j	158	Pt	191	1	224	α
7	•	34	u	126	~	159	f	192	Ĺ	225	ß
8		35	#	127		160	á	193	T	226	Г
9	0	36	\$	128	C	161	í	194	т	227	π
10		37	%	129	ů	162	ó	195	÷	228	Σ
11	ď	38	&	130	é	163	ú	196	-	229	σ

- The set Σ^* of *strings* over the alphabet Σ is defined by
 - **Basis:** $\mathcal{E} \in \Sigma^*$ (\mathcal{E} is the empty string)
 - **Recursive:** if $w \in \Sigma^*$, $a \in \Sigma$, then $wa \in \Sigma^*$

function definitions on recursively defined sets

Length: len (ε) = 0; len (wa) = 1 + len(w); for $w \in \Sigma^*$, $a \in \Sigma$

Reversal:

С

$$\mathcal{E}^{R} = \mathcal{E}$$

$$(wa)^{R} = aw^{R} \text{ for } w \in \Sigma^{*}, a \in \Sigma$$

$$X \circ (a_{1}a_{2} \cdots a_{k})$$
oncatenation:
$$x \circ \mathcal{E} = x \text{ for } x \in \Sigma^{*} = (X \circ (a_{1} \cdots a_{k-1})) a_{k}$$

$$x \circ wa = (x \circ w)a \text{ for } x, w \in \Sigma^{*}, a \in \Sigma$$

$$= X a_{1}a_{2} \cdots a_{k}$$

How to prove $\forall x \in S, P(x)$ is true:

Base Case: Show that P(u) is true for all specific elements u of S mentioned in the *Basis step*

Inductive Hypothesis: Assume that *P* is true for some arbitrary values of *each* of the existing named elements mentioned in the *Recursive step*

Inductive Step: Prove that P(w) holds for each of the new elements w constructed in the *Recursive step* using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

structural induction for strings

an Let *S* be a set of strings over $\Sigma = \{a, b\}$ defined by $B_{y} IN \longrightarrow \#_{q}(uv) = \#_{a}(u) + \#_{a}(v)$ $\#_{b}(uv) = \#_{b}(u) + \#_{b}(v)$ **Basis**: $a \in S$ **Recursive:** If $w \in S$ then $wa \in S$ and $wba \in S$ If $u, v \in S$ then $uv \in S$ \Rightarrow P(uv). Claim: If $w \in S$ then w has more a's than b's. P(w) = "whas more a's than b's Base case: a has none as then I's so P(0) hilds. 14: Assume P(w), P(w), P(w) for some u, v, wes If #(w)>#(w) then #a(wa) > #b(wa) > Pluca) tin #a (uba) > #1 (wba) => P(wha)

proof continued?

prove: $len(x \cdot y) = len(x) + len(y)$ for all $x, y \in \Sigma^*$ Let P(y) be "len $(x \cdot y) = len(x) + len(y)$ for all $x \in {\Sigma^*}^{/l}$

Goal: P(y) YYEZT Base case: $|en(X \cdot E) = |en(X) = |en(X) + |en(E) \longrightarrow P(E)$ (thez) pet of . Let of Len The: Assure p(w) for some WEZ* IS: Fix x EZ*. $|e_{n}(X \cdot (\omega a)) = |e_{n}((X \cdot \omega)a) = |+ |e_{n}(X \cdot \omega)|$ $aet of \cdot aet of len (=) P(\omega a)$ P(w) det of = | + len(x) + len(w)= |en(X) + |en(bx)|Length: By store D(y). tot of len len $(\varepsilon) = 0;$ len (*wa*) = 1 + len(*w*); for $w \in \Sigma^*$, $a \in \Sigma$

- Basis:
 is a rooted binary tree
- Recursive step:

defining a function on rooted binary trees

• size(•) = 1

• size
$$\left(\begin{array}{c} \mathbf{T}_{1} \\ \mathbf{T}_{1} \\ \mathbf{T}_{2} \end{array} \right) = 1 + \text{size}(\mathbf{T}_{1}) + \text{size}(\mathbf{T}_{2})$$

• height(•) = 0

• height
$$\left(\begin{array}{c} \mathbf{T}_{1} \\ \mathbf{T}_{1} \\ \mathbf{T}_{2} \end{array} \right) = 1 + \max\{\text{height}(\mathbf{T}_{1}), \text{height}(\mathbf{T}_{2})\}$$

size vs. height

Claim: For every rooted binary tree T, size(T) $\leq 2^{\operatorname{height}(T)+1}$ $P(T) = "size(T) \le 2^{height(T) + 1} - 1"$ 15 5 2 Base case: e: $5i2e(\cdot) = | = 2^{0+1} - 1$ = height (.) + 1 \geq (.) \Rightarrow (Ti) and P(Ti) for some RBTS TITZ TH: P $max(htt,1,\mu(T_2)) \neq 1$ Goal: - 2. h ር . 2 $Size(T_3) = |+ size(T_1) + size(T_1)|$ $T_{M} \leq [+(2^{h(T_{1})+1}-1)+(2^{h(T_{2})+1}-1)]$ max (htti) fr (Tz)) $=2(2^{h(T_1)}+2^{h(T_2)})-1 \leq 2.2.2$

 $1 \leq \Sigma^*$

Sets of strings that satisfy special properties are called languages.

Examples:

- English sentences
- Syntactically correct Java/C/C++ programs
- $\Sigma^* = AII$ strings over alphabet Σ
- Palindromes over Σ
- Binary strings that don't have a 0 after a 1
- Legal variable names, keywords in Java/C/C++
- Binary strings with an equal # of 0's and 1's