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Spring 2015
Lecture 19:  Structural induction and regular expressions



review: strings

• An alphabet  is any finite set of characters.

e.g. Σ = {0,1} or Σ = {𝐴, 𝐵, 𝐶, … 𝑋, 𝑌, 𝑍} or

Σ =

• The set * of strings over the alphabet  is defined by

– Basis: ℇ  *  (ℇ is the empty string)

– Recursive:  if 𝑤  *, 𝑎  , then 𝑤𝑎  *



function definitions on recursively defined sets

Length:
len (ℇ) = 0;
len (𝑤𝑎) = 1 + len(𝑤); for 𝑤 ∈ Σ∗, 𝑎 ∈ Σ

Reversal:
ℇR = ℇ

𝑤𝑎 R = 𝑎𝑤R for 𝑤  *, 𝑎  

Concatenation:
𝑥 • ℇ = 𝑥 for 𝑥  *
𝑥 • 𝑤𝑎 = (𝑥 • 𝑤)𝑎 for 𝑥, 𝑤  *, 𝑎  



How to prove ∀ 𝑥 ∈ 𝑆, 𝑃(𝑥) is true:

Base Case: Show that 𝑃(𝑢) is true for all specific elements
𝑢 of 𝑆 mentioned in the Basis step

Inductive Hypothesis:  Assume that 𝑃 is true for some 
arbitrary values of each of the existing named elements
mentioned in the Recursive step

Inductive Step: Prove that 𝑃(𝑤) holds for each of the new 
elements 𝑤 constructed in the Recursive step using the 
named elements mentioned in the Inductive Hypothesis

Conclude that ∀ 𝑥 ∈ 𝑆, 𝑃(𝑥) 

review: structural induction



structural induction for strings

Let 𝑆 be a set of strings over Σ = {𝑎, 𝑏} defined by

Basis: 𝑎 ∈ 𝑆

Recursive:

If 𝑤 ∈ 𝑆 then 𝑤𝑎 ∈ 𝑆 and 𝑤𝑏𝑎 ∈ 𝑆

If 𝑢, 𝑣 ∈ 𝑆 then 𝑢𝑣 ∈ 𝑆

Claim:  If 𝑤 ∈ 𝑆 then 𝑤 has more 𝑎’s than 𝑏’s.



proof continued?



prove:  len 𝑥 ⋅ 𝑦 = len 𝑥 + len 𝑦 for all 𝑥, 𝑦 ∈ Σ∗

Let 𝑃(𝑦) be “len 𝑥 ⋅ 𝑦 = len 𝑥 + len(y) for all 𝑥 ∈ Σ∗

Length:
len (ℇ) = 0;
len (𝑤𝑎) = 1 + len(𝑤);  for 𝑤 ∈ Σ∗, 𝑎 ∈ Σ



review: rooted binary trees

• Basis:   •  is a rooted binary tree

• Recursive step: 

If                and                are rooted binary trees,                                                            

then so is:   

T1 T2

T1
T2



defining a function on rooted binary trees

• size(•) = 1

• size ( ) = 1 + size(T1) + size(T2)

• height(•) = 0

• height ( )=1 + max{height(T1), height(T2)}

T1 T2

T1 T2



size vs. height

Claim:  For every rooted binary tree 𝑇, size 𝑇 ≤ 2height 𝑇 +1 − 1



languages:  sets of strings

Sets of strings that satisfy special properties are called languages.  

Examples:

– English sentences

– Syntactically correct Java/C/C++ programs

– * = All strings over alphabet  

– Palindromes over  

– Binary strings that don’t have a 0 after a 1

– Legal variable names, keywords in Java/C/C++

– Binary strings with an equal # of 0’s and 1’s


