cse 311: foundations of computing

Spring 2015

Lecture 18:

Recursively defined sets and structural induction

administrative

Four weeks left: What happens now?

The class speeds up a bit.

Homework problems get more conceptual.

We will cover:

- Recursively defined sets and functions
- Structural induction
- Regular expressions and context free grammars
- Relations and graphs
- Finite state machines and automata
- Turing machines and undecidability

recursive definition of sets

Recursive definition

- Basis step: 0 ∈ S
- Recursive step: if $x \in S$, then $x + 2 \in S$
- Exclusion rule: Every element in S follows from basis steps and a finite number of recursive steps

recursive definition of sets

```
Basis: 6 \in S; 15 \in S;
Recursive: if x, y \in S, then x + y \in S;
```

Basis: $[1, 1, 0] \in S, [0, 1, 1] \in S;$ Recursive:

if $[x, y, z] \in S$, $\alpha \in \mathbb{R}$, then $[\alpha x, \alpha y, \alpha z] \in S$ if $[x_1, y_1, z_1]$, $[x_2, y_2, z_2] \in S$ then $[x_1 + x_2, y_1 + y_2, z_1 + z_2] \in S$

Powers of 3:

recursive definitions of sets: general form

Recursive definition

- Basis step: Some specific elements are in S
- Recursive step: Given some existing named elements in S some new objects constructed from these named elements are also in S.
- Exclusion rule: Every element in S follows from basis steps and a finite number of recursive steps

strings

• An alphabet ∑ is any finite set of characters.

e.g.
$$\Sigma = \{0,1\}$$
 or $\Sigma = \{A,B,C,...X,Y,Z\}$ or $\Sigma = \{\frac{1}{2},\frac$

- The set Σ* of strings over the alphabet Σ is defined by
 - Basis: $\mathcal{E} \in \Sigma^*$ (\mathcal{E} is the empty string)
 - **Recursive:** if $w \in \Sigma^{\star}$, $a \in \Sigma$, then $wa \in \Sigma^{\star}$

palindromes

binary strings such that...

Palindromes are strings that are the same backwards and forwards.

First digit cannot be a 1.

Basis:

 \mathcal{E} is a palindrome and any $a \in \Sigma$ is a palindrome

* No occurrence of the substring 11.

Recursive step:

If p is a palindrome then apa is a palindrome for every $a \in \Sigma$.

function definitions on recursively defined sets

function definitions on recursively defined sets

Length:

len (
$$\varepsilon$$
) = 0;
len (wa) = 1 + len(w); for $w \in \Sigma^*$, $a \in \Sigma$

Reversal:

$$\varepsilon^{R} = \varepsilon$$

 $(wa)^{R} = aw^{R} \text{ for } w \in \Sigma^{*}, a \in \Sigma$

Concatenation:

$$x \bullet \mathcal{E} = x \text{ for } x \in \Sigma^*$$

 $x \bullet wa = (x \bullet w)a \text{ for } x, w \in \Sigma^*, a \in \Sigma$

Number of vowels in a string:

$$\Sigma = \{a, b, c, \dots, z\}$$

$$\mathcal{V} = \{a, e, i, o, u\}$$

rooted binary trees

rooted binary trees

- Basis:
- · is a rooted binary tree
- · Recursive step:

- Basis:
 is a rooted binary tree
- · Recursive step:

defining a function on rooted binary trees

• size(•) = 1

• size () = 1 + size(T₁) + size(T₂)

• height(•) = 0

• height (T_1) = 1 + max{height(T_1), height(T_2)}

structural induction

How to prove $\forall x \in S, P(x)$ is true:

Base Case: Show that P(u) is true for all specific elements

u of S mentioned in the Basis step

Inductive Hypothe arbitrary values of mentioned in the A

Inductive Step: Preelements w const named elements n

Conclude that $\forall x$

using structural induction

Let S be given by:

– Basis: 6 ∈ S; 15 ∈ S;

- Recursive: if $x, y \in S$ then $x + y \in S$.

Claim: Every element of S is divisible by 3.

structural induction

How to prove $\forall x \in S, P(x)$ is true:

Base Case: Show that P(u) is true for all specific elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some arbitrary values of *each* of the existing named elements mentioned in the *Recursive step*

Inductive Step: Prove that P(w) holds for each of the new elements w constructed in the *Recursive step* using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

structural induction vs. ordinary induction

Ordinary induction is a special case of structural induction:

Recursive definition of $\ensuremath{\mathbb{N}}$

Basis: $0 \in \mathbb{N}$

Recursive step: If $k \in \mathbb{N}$ then $k + 1 \in \mathbb{N}$

Structural induction follows from ordinary induction:

Let Q(n) be true iff for all $x \in S$ that take n recursive steps to be constructed, P(x) is true.