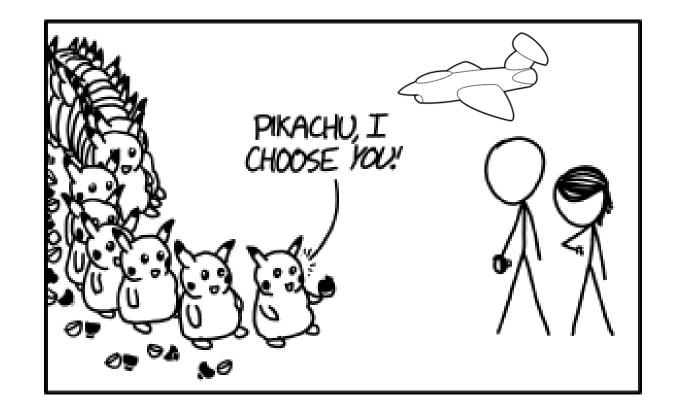
cse 311: foundations of computing

Spring 2015 Lecture 18: Recursively defined sets and structural induction



Four weeks left: What happens now?

The class speeds up a bit. Homework problems get more conceptual.

We will cover:

- Recursively defined sets and functions
- Structural induction
- Regular expressions and context free grammars
- Relations and graphs
- Finite state machines and automata
- Turing machines and undecidability

Recursive definition

- **–** Basis step: $0 \in S$
- Recursive step: if $x \in S$, then $x + 2 \in S$
- Exclusion rule: Every element in S follows from basis steps and a finite number of recursive steps

Basis: $6 \in S; 15 \in S;$ **Recursive:** if $x, y \in S$, then $x + y \in S$; $S = \{ 6a + 15b : a, b \ge 0 \\ a, b \in \mathbb{N} \}$ **Basis**: $[1, 1, 0] \in S, [0, 1, 1] \in S;$ **Recursive:** if $[x, y, z] \in S$, $\alpha \in \mathbb{R}$, then $[\alpha x, \alpha y, \alpha z] \in S$ if $[x_1, y_1, z_1], [x_2, y_2, z_2] \in S$ then $[x_1 + x_2, y_1 + y_2, z_1 + z_2] \in S$ Powers of 3: Basis: $L0,0,1] \in S = Span((1,1,0),(0,1,1))$ Recurre: XES => 3XES Kasis: 1ES

Recursive definition

- *Basis step:* Some specific elements are in *S*
- *Recursive step:* Given some existing named elements in S some new objects constructed from these named elements are also in S.
- *Exclusion rule*: Every element in *S* follows from basis steps and a finite number of recursive steps

• An *alphabet* Σ is any finite set of characters.

e.g. $\Sigma = \{0,1\}$ or $\Sigma = \{A, B, C, ..., X, Y, Z\}$ or

$\rangle = 1$		28	L	95		153	Ö	186	1	219	
2	•	29	**	96		154	Ü	187	ī	220	
3	۷	30		97-12	22 a-z	155	¢	188	1	221	- 1
4	•	31		123	{	156	£	189	R	222	1
5	*	32 (s	pace)	124	Ì	157	¥	190	3	223	
6	•	33	Í.	125	Ś	158	Pt	191	٦	224	α
7	•	34		126	~	159	f	192	L	225	ß
8		35	#	127		160	á	193	T	226	Г
9	0	36	\$	128	Ç	161	í	194	т	227	π
10		37	%	129	ü	162	ó	195	ŀ	228	Σ
11	ď	38	&	130	é	163	ú	196	-	229	σ

- The set Σ^* of *strings* over the alphabet Σ is defined by
 - **Basis:** $\mathcal{E} \in \Sigma^*$ (\mathcal{E} is the empty string)
 - **Recursive:** if $w \in \Sigma^*$, $a \in \Sigma$, then $wa \in \Sigma^*$

Palindromes are strings that are the same backwards and forwards. $\sum = finite$ alphabet

Basis:

 \mathcal{E} is a palindrome and any $a \in \Sigma$ is a palindrome

Recursive step:

If *p* is a palindrome then apa is a palindrome for every $a \in \Sigma$.

First digit cannot be a 1.
Basis:
$$0 \in S$$
, $\xi \in S$
Recursive step: $f \quad X \in S$ and $\chi \neq \xi$
then $\chi 0 \in S$
 $\chi 1 \in S$.
* No occurrence of the substring \$1. then $\chi 0 \in S$.
Basis: $\xi \in S$
Recursive step: $f \in \chi_1 \dots \chi_k \in S$ and $\chi_k \neq 1$
then $\chi_1 \dots \chi_k \leq S$
 $K \in S$
 $f \in S$

function definitions on recursively defined sets

Length:

$$X \cdot Y$$

$$Ien (\varepsilon) = 0;$$

$$Ien (wa) = 1 + Ien(w); \text{ for } w \in \Sigma^*, a \in \Sigma$$

$$\int e_n(\circ(\varepsilon) = \int e_n(\circ) + \varepsilon$$

$$\mathbb{R} = \varepsilon$$

$$(wa)^R = aw^R \text{ for } w \in \Sigma^*, a \in \Sigma$$

$$(wa)^R = aw^R \text{ for } w \in \Sigma^*, a \in \Sigma$$

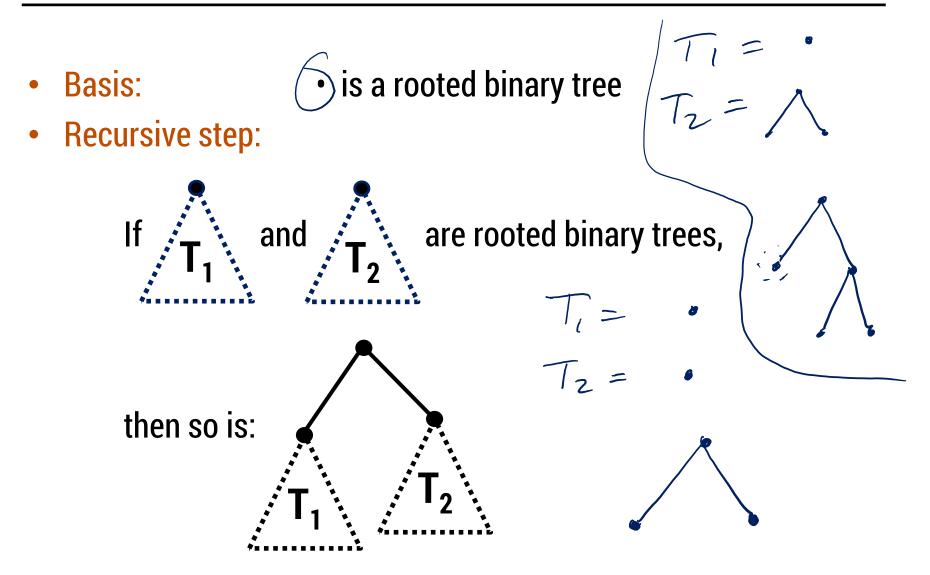
$$(010^{K} = 1(\circ)^{K} = 3).$$

$$(010^{K} = 1(\circ)^{K} = 10^{K} = 10^$$

function definitions on recursively defined sets

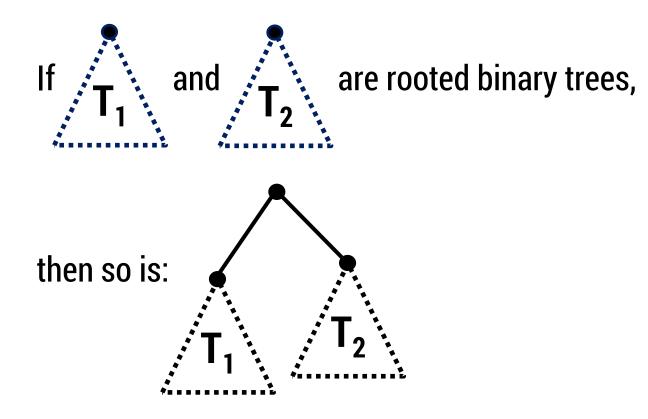
Number of vowels in a string: $\Sigma = \{a, b, c, \dots, z\} \qquad \qquad \bigvee o \lor (\times)$ $\mathcal{V} = \{a, e, i, o, u\}$ Basis: Vow (E) = 0 Recursive step: For $w \in \Sigma^*$ ad $a \in \Sigma$ $V_{OW}(wa) = \int (1 + v_{OW}(w)) a \in V$ $v_{OW}(w) a \notin V$

rooted binary trees



rooted binary trees

- Basis:
 is a rooted binary tree
- Recursive step:



defining a function on rooted binary trees

• size(•) = 1

• size
$$\left(\begin{array}{c} \mathbf{T}_{1} \\ \mathbf{T}_{1} \\ \mathbf{T}_{2} \end{array} \right) = 1 + \text{size}(\mathbf{T}_{1}) + \text{size}(\mathbf{T}_{2})$$

• height(•) = 0

• height
$$\left(\begin{array}{c} \mathbf{T}_{1} \\ \mathbf{T}_{1} \\ \mathbf{T}_{2} \end{array} \right) = 1 + \max\{\text{height}(\mathbf{T}_{1}), \text{height}(\mathbf{T}_{2})\}$$

How to prove $\forall x \in S, P(x)$ is true:

Base Case: Show that P(u) is true for all specific elements u of S mentioned in the *Basis step*

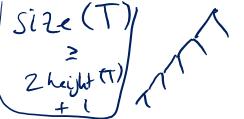
Inductive Hypothesis: Assume that *P* is true for some arbitrary values of *each* of the existing named elements mentioned in the *Recursive step*

Inductive Step: Prove that P(w) holds for each of the new elements w constructed in the *Recursive step* using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

structural induction

How to prove $\forall x \in S, P(x)$ is true:

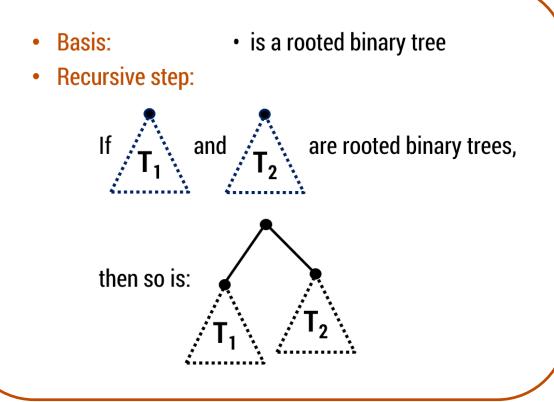


Base Case: Show that P(u) is true for all specific elements u of S mentioned in the *Basis step*

Inductive Hypother arbitrary values of mentioned in the I

Inductive Step: Pre elements w const named elements n

Conclude that $\forall x$



structural induction vs. ordinary induction

Ordinary induction is a special case of structural induction: Recursive definition of N

> **Basis:** $0 \in \mathbb{N}$ **Recursive step:** If $k \in \mathbb{N}$ then $k + 1 \in \mathbb{N}$

Structural induction follows from ordinary induction:

Let Q(n) be true iff for all $x \in S$ that take *n* recursive steps to be constructed, P(x) is true.

HXES PK)

Let *S* be given by:

- **Basis:** $6 \in S$; $15 \in S$;
- **Recursive:** if $x, y \in S$ then $x + y \in S$.

Claim: Every element of *S* is divisible by 3.

$$P(x) = (x \text{ is divisible by } 3')$$

Base case: $6 = 2 \cdot 5 \rightarrow P(6)$
 $15 = 5 \cdot 5 \rightarrow P(15)$
It: Assume $P(x)$ and $P(y)$ for $x_1y \in S$
Goal: $P(x_1y) \qquad P(x) \Rightarrow x = 3i \Rightarrow x_1y = 3(1+j)$
 $P(y) = y = 3j \Rightarrow 3|x_1y$
By straind, $\forall x \in S P(x)$.