cse 311: foundations of computing

Spring 2015
Lecture 17: Recursively defined sets

YOUR PARTY ENTERS THE TAVERN.

T GATHER EVERYONE AROUND
A TABLE. I HAVE THE ELVES
START WHITTLING DICE AND
GET QUT SOME PARCHMENT
FOR CHARACTER SHEETS.

'\ HEY, NO RECURSING.

i

P(0)
vk ((P(o) AP(1) AP(2) A AP(K)) = P(k + 1))

“¥YnP(n)

Follows from ordinary induction applied to
Q) = P(0) A P(1) A P(2) A+ A P(n)

administrative

Midterm review session tonight @ 6pm (EEB 105)
MIDTERM FRIDAY (IN THIS ROOM, USUAL TIME)

Closed book.

One page (front and back) of hand-written notes allowed.
Exam includes induction and strong induction!
Homework #5 is up now, but due on Friday, May 15t

. By induction we will show that P(n) is true for

everyn =0

. Base Case: Prove P(0)
. Inductive Hypothesis:

Assume that for some arbitrary integer k = 0,
P(j) is true for every j from 0 to k

. Inductive Step:

Prove that P(k + 1) is true using the Inductive
Hypothesis (that P(j) is true for all values < k)

. Conclusion: Result follows by induction

We argue by strong induction.
P(n) = “n can be expressed as a product of primes” for n > 2.
Base Case:
Note that 2 is prime; so, we can express it as “2” which is a
product of primes.
Induction Hypothesis:
Suppose P(2) AP(3) A = = = AP(k)is true for some k > 2.
Induction Step:
We go by cases.
Suppose k+1is prime. Then, “k+1” is a product of primes.
Suppose k+1 is composite. Then, k+1 = ab for some a and b such
that 1<a, b <k+1.
By our IH, we know a = p,p, - p,, and b = q,q, -*- q,.
So, k+1 =ab =“pyp, *** py01Q; *** 9,", Which is a product of primes.

Thus, our claim is true for n 2 2 by strong induction.

F(0) = 0; F(n + 1) = F(n) + 1foralln=0
G0)=1;G(n + 1) = 2xG(n) foralln =0
00=1; (n+1)! = (n+1)xnlforalln=0

H(0) = 1; Hm + 1) = 2™ foralln =0
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fo=0
fi=1
fo=foo1+ fnp foralln=2

bounding the Fibonacci numbers

Theorem: f, < 2" foralln = 2.

running time of Euclid’s algorithm

n
Theorem: 22" < f, < 2" foralln > 2

running time of Euclid’s algorithm

recursive definition of sets

Theorem:  Suppose that Euclid’s algorithm takes n steps
for gcd(a, b) witha > b, thena > f

n+1°
Proof:
Setr,,1 = a,r, = b then Euclid's algorithm computes

Tl = 4, n +Tno1

Tn =Gy qTn-1+Tn2 each quotient g, >1
r =1

T3 =qrytT

T2 =qn

Recursive definition
— Basisstep: 0 € §
— Recursive step: if x € S,thenx+2 €S

— Exclusion rule: Every element in S follows from basis
steps and a finite number of recursive steps
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recursive definition of sets

Basis: 6€S; 15€S;
Recursive: ifx,y € S, thenx + y € S;

Basis: [1,1,0]€ S,[0,1,1]S;
Recursive:
if[x,y,z]€ S, a € R, then [ax,ay,az] €S

if [x1,¥1,21), [x2,¥2,2,] € S
then[x; + x,, y; + ¥, 2z, + 2] €S

Powers of 3:

strings

recursive definitions of sets: general form

* An alphabet % is any finite set of characters.

* The set =* of strings over the alphabet = is defined by
— Basis: € € I* (€ is the empty string)
— Recursive: if w € X* a € X, then wa € =*

all binary strings with no 1's before 0’s

Recursive definition
— Basis step: Some specific elements are in S
— Recursive step: Given some existing named elements in S
some new objects constructed from these named elements
arealsoin S.
— Exclusion rule: Every element in S follows from basis steps
and a finite number of recursive steps

palindromes

Palindromes are strings that are the same backwards
and forwards.

Basis:
€ is a palindrome and any a € X is a palindrome

Recursive step:

If p is a palindrome then apa is a palindrome for
everya € X.

function definitions on recursively defined sets

Length:
len (€)= 0;
len (wa)=1+len(w); forw € 2", a €

Reversal:
eR=¢

(wa)R = aw® forw e Z*aeX

Concatenation:
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function definitions on recursively defined sets

Length:
len (wa) =1+len(w); forw € £",a € =

Reversal:
eR=¢
wa)R = auw® forwe =¥ aeX

Concatenation:
x o= xforx ex*
x ewa=(x e waforx,weI*ael
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