
cse 311: foundations of computing

Spring 2015
Lecture 17:  Recursively defined sets



administrative

Midterm review session tonight @ 6pm (EEB 105)

MIDTERM FRIDAY (IN THIS ROOM, USUAL TIME)

Closed book.
One page (front and back) of hand-written notes allowed.

Exam includes induction and strong induction!
Homework #5 is up now, but due on Friday, May 15th.



review: strong induction

Follows from ordinary induction applied to 

𝑄 𝑛 = 𝑃 0  𝑃 1  𝑃 2 ⋯ 𝑃(𝑛)

𝑃 0

∀𝑘 𝑃 0 ∧ 𝑃 1 ∧ 𝑃 2 ∧ ⋯∧ 𝑃 𝑘 → 𝑃 𝑘 + 1

∴ ∀𝑛 𝑃(𝑛)



review: strong induction English proof

1. By induction we will show that 𝑃(𝑛) is true for every 

𝑛 ≥ 0

2. Base Case: Prove 𝑃(0)

3. Inductive Hypothesis: 

Assume that for some arbitrary integer 𝑘 ≥ 0,  𝑃(𝑗) is 

true for every 𝑗 from 0 to 𝑘

4. Inductive Step: 

Prove that 𝑃(𝑘 + 1) is true using the Inductive 

Hypothesis (that 𝑃(𝑗) is true for all values  𝑘)

5. Conclusion: Result follows by induction



review: every integer at least 2 is the product of primes

We argue by strong induction.
P(n) = “n can be expressed as a product of primes” for n ≥ 2.
Base Case:

Note that 2 is prime; so, we can express it as “2” which is a 
product of primes.

Induction Hypothesis:

Suppose P(2) ∧ P(3) ∧・・・ ∧ P(k) is true for some k ≥ 2.
Induction Step:

We go by cases.  
Suppose k+1 is prime.  Then, “k+1” is a product of primes.
Suppose k+1 is composite.  Then, k+1 = ab for some a and b such
that 1 < a, b < k+1.  
By our IH, we know a = p1p2 ⋯ pm and b = q1q2 ⋯ qn.
So, k+1 = ab = “p1p2 ⋯pmq1q2 ⋯ qn”, which is a product of primes. 

Thus, our claim is true for n ≥ 2 by strong induction.



review: recursive definition of functions

• 𝐹(0) = 0; 𝐹(𝑛 + 1) = 𝐹(𝑛) + 1 for all 𝑛 ≥ 0

• 𝐺 0 = 1; 𝐺 𝑛 + 1 = 2 × 𝐺(𝑛) for all 𝑛 ≥ 0

• 0! = 1; 𝑛 + 1 ! = 𝑛 + 1 × 𝑛! for all 𝑛 ≥ 0

• 𝐻(0) = 1; 𝐻(𝑛 + 1) = 2𝐻 𝑛 for all 𝑛 ≥ 0



review: Fibonacci numbers

𝑓0 = 0
𝑓1 = 1
𝑓𝑛 = 𝑓𝑛−1 + 𝑓𝑛−2 for all 𝑛 ≥ 2



review: bounding the Fibonacci numbers

Theorem:   𝑓𝑛 < 2𝑛 for all 𝑛 ≥ 2.



bounding the Fibonacci numbers

Theorem:  2
𝑛

2
−1 ≤ 𝑓𝑛 < 2𝑛 for all 𝑛 ≥ 2



running time of Euclid’s algorithm



running time of Euclid’s algorithm

Theorem: Suppose that Euclid’s algorithm takes 𝑛 steps

for gcd(𝑎, 𝑏) with 𝑎 > 𝑏, then 𝑎 ≥ 𝑓𝑛+1.

Proof:

Set 𝑟𝑛+1 = 𝑎, 𝑟𝑛 = 𝑏 then Euclid’s algorithm computes

𝑟𝑛+1 = 𝑞𝑛𝑟𝑛 + 𝑟𝑛−1
𝑟𝑛 = 𝑞𝑛−1𝑟𝑛−1 + 𝑟𝑛−2

⋮

𝑟3 = 𝑞2𝑟2 + 𝑟1
𝑟2 = 𝑞1𝑟1

each quotient 𝑞𝑖 ≥ 1
𝑟1 ≥ 1


