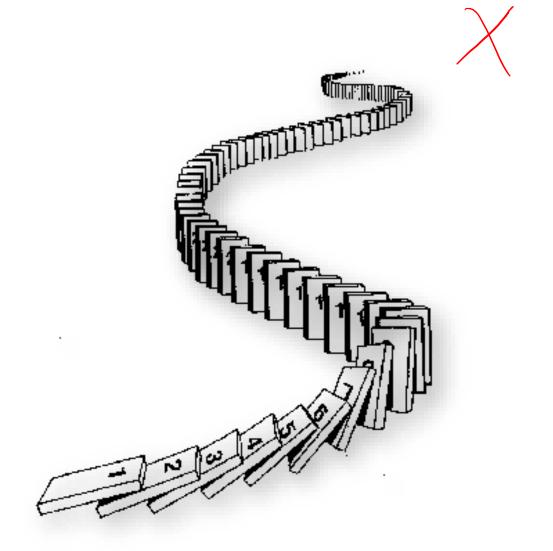
cse 311: foundations of computing

Spring 2015

Lecture 15: Induction



Let n > 0 be arbitrary.

Suppose that a is odd. We know that if a, b are odd, then ab is also odd.

So:
$$(\cdots ((a \cdot a) \cdot a) \cdot \cdots \cdot a) = a^n$$
 [n times]
$$\forall n \geq 0 \quad \forall n \geq$$

Those "···"s are a problem! We're trying to say "we can use the same argument over and over..."

We'll come back to this.

mathematical induction

Method for proving statements about all integers ≥ 0

- A new logical inference rule!
 - It only applies over the natural numbers
 - The idea is to use the special structure of the naturals to prove things more easily
- Particularly useful for reasoning about programs!

```
for(int i=0; i < n; n++) { ... }
```

Show P(i) holds after i times through the loop

```
public int f(int x) {

if (x == 0) { return 0; } f(x) = 0

else { return f(x-1)+1; }}
```

• f(x) = x for all values of $x \ge 0$ naturally shown by induction.

$$\implies \forall x \not t \otimes = x$$

f(x) = x

induction is a rule of inference

Domain: Natural Numbers

$$P(0)$$

$$\forall k (P(k) \rightarrow P(k+1))$$

 $\therefore \forall n P(n)$

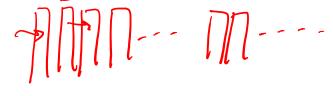
using the induction rule in a formal proof

$$P(0)$$

$$\forall k (P(k) \rightarrow P(k+1))$$

$$\therefore \forall n P(n)$$

- 1. Prove P(0)
- 2. Let k be an arbitrary integer ≥ 0
 - 3. Assume that P(k) is true
 - 4. ...
 - 5. Prove P(k+1) is true
- 6. $P(k) \rightarrow P(k+1)$
- 7. \forall k (P(k) \rightarrow P(k+1))
- 8. ∀ n P(n)



Direct Proof Rule
Intro ∀ from 2-6
Induction Rule 1&7

thas PM)

format of an induction proof

$$Q(k) = P(k+s)$$

$$\mathcal{O}(k) = P(0)$$

$$P(k+S) \quad \forall k (P(k) \rightarrow P(k+1))$$

$$\therefore \forall n P(n)$$

1. Prove P(0)

Base Case

- 2. Let k be an arbitrary integer ≥ 0
 - 3. Assume that P(k) is true

5. Prove P(k+1) is true

Inductive Hypothesis

Inductive Step

6.
$$P(k) \rightarrow P(k+1)$$

7. \forall k (P(k) \rightarrow P(k+1))

8. \forall n P(n)

Direct Proof Rule

Intro ∀ from 2-6

Induction Rule 1&7

Conclusion

$$1 + 2 + 4 + 8 + \cdots + 2^n$$

Can we describe the pattern?
$$y \in S$$

$$1 + 2 + 4 + \cdots + 2^n = 2^{n+1} - 1$$

proving $1 + 2 + 4 + \dots + 2^n = 2^{n+1} - 1$

$$P(n) = (1+2+\cdots+2^{n} = 2^{n+1}-1)^{n}$$
Base case: $P(0)$ (1 = $2^{n+1}-1$)

$$1 = 1$$

$$P(0) \text{ holds.}$$

It: Assume $P(k)$ holds for some (arbitry) $k \ge 0$

Ind. Step: By $P(k)$, $k \ge 0$

$$|kd | Step: By $P(k)$, $k \ge 0$

$$|kd | Step: By $P(k)$, $k \ge 0$

$$|kd | Step: By $P(k)$, $k \ge 0$

$$|kd | Step: By $P(k)$, $k \ge 0$

$$|kd | Step: By $P(k)$, $k \ge 0$

$$|kd | Step: By $P(k)$, $k \ge 0$

$$|kd | Step: By $P(k)$, $k \ge 0$

$$|kd | Step: By $P(k)$, $k \ge 0$

$$|kd | Step: By $P(k)$, $k \ge 0$

$$|kd | Step: By $P(k)$, $k \ge 0$

$$|kd | Step: By $P(k)$, $k \ge 0$

$$|kd | Step: By $P(k)$, $k \ge 0$

$$|kd | Step: By $P(k)$, $k \ge 0$

$$|kd | Step: By $P(k)$, $k \ge 0$

$$|kd | Step: By $P(k)$, $k \ge 0$

$$|kd | Step: By $P(k)$, $k \ge 0$

$$|kd | Step: By $P(k)$, $k \ge 0$

$$|kd | Step: By $P(k)$, $k \ge 0$

$$|kd | Step: By $P(k)$, $k \ge 0$

$$|kd | Step: By $P(k)$, $k \ge 0$

$$|kd | Step: By $P(k)$, $k \ge 0$

$$|kd | Step: By $P(k)$, $k \ge 0$

$$|kd | Step: By $P(k)$, $k \ge 0$

$$|kd | Step: By $P(k)$, $k \ge 0$

$$|kd | Step: By $P(k)$, $k \ge 0$

$$|kd | Step: By $P(k)$, $k \ge 0$

$$|kd | Step: By $P(k)$, $k \ge 0$

$$|kd | Step: By $P(k)$, $k \ge 0$

$$|kd | Step: By $P(k)$, $k \ge 0$

$$|kd | Step: By $P(k)$, $k \ge 0$

$$|kd | Step: By $P(k)$, $k \ge 0$

$$|kd | Step: By $P(k)$, $k \ge 0$

$$|kd | Step: By $P(k)$, $k \ge 0$

$$|kd | Step: By $P(k)$, $k \ge 0$

$$|kd | Step: By $P(k)$, $k \ge 0$

$$|kd | Step: By $P(k)$, $k \ge 0$

$$|kd | Step: By $P(k)$, $k \ge 0$

$$|kd | Step: By $P(k)$, $k \ge 0$

$$|kd | Step: By $P(k)$, $k \ge 0$

$$|kd | Step: By $P(k)$, $k \ge 0$

$$|kd | Step: By $P(k)$, $k \ge 0$

$$|kd | Step: By $P(k)$, $k \ge 0$

$$|kd | Step: By $P(k)$, $k \ge 0$

$$|kd | Step: By $P(k)$, $k \ge 0$

$$|kd | Step: By $P(k)$, $k \ge 0$

$$|kd | Step: By P(k)$$
, $k \ge 0$

$$|kd | Step: By P(k)$$

inductive proof in five easy steps

Proof:

- 1. "We will show that P(n) is true for every $n \ge 0$ by induction."
- 2. "Base Case:" Prove P(0)
- 3. "Inductive Hypothesis:"

 Assume P(k) is true for some arbitrary integer k ≥ 0"
- 4. "Inductive Step:" Want to prove that P(k+1) is true: Use the goal to figure out what you need.

Make sure you are using I.H. and point out where you are using it. (Don't assume P(k+1)!)

5. "Conclusion: Result follows by induction."

proving
$$1 + 2 + ... + 2^n = 2^{n+1} - 1$$

- 1. Let P(n) be "1 + 2 + ... + $2^n = 2^{n+1} 1$ ". We will show P(n) is true for all natural numbers by induction.
- 2. Base Case (n=0): $2^0 = 1 = 2 1 = 2^{0+1} 1$
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary $k \ge 0$.
- 4. Induction Step:

Goal: Show P(k+1), i.e. show
$$1 + 2 + ... + 2^k + 2^{k+1} = 2^{k+2} - 1$$

$$1 + 2 + ... + 2^{k} = 2^{k+1} - 1$$
 by IH

Adding 2^{k+1} to both sides, we get:

$$1 + 2 + ... + 2^{k} + 2^{k+1} = 2^{k+1} + 2^{k+1} - 1$$

Note that $2^{k+1} + 2^{k+1} = 2(2^{k+1}) = 2^{k+2}$.

So, we have $1 + 2 + ... + 2^k + 2^{k+1} = 2^{k+2} - 1$, which is exactly P(k+1).

5. Thus P(k) is true for all $k \in \mathbb{N}$, by induction.

another example of a pattern

•
$$2^0 - 1 = 1 - 1 = 0 = 3 \cdot 0$$

•
$$2^2 - 1 = 4 - 1 = 3 = 3 \cdot 1$$

•
$$2^4 - 1 = 16 - 1 = 15 = 3.5$$

•
$$2^6 - 1 = 64 - 1 = 63 = 3 \cdot 21$$

•
$$2^8 - 1 = 256 - 1 = 255 = 3.85$$

• ...

prove: $3 | 2^{2n} - 1 \text{ for all } n \ge 0$

$$P(n) = (3) 2^{2n} - 1$$
Goal: $\forall h \geq 0 \neq 0$

Base case: $2^{2 \cdot 0} - 1 = 0 = 0.3$

$$2^{(k+1)} = 3h$$

Ind. Hypoth: $P(k)$ holds for some $k \geq 0$

$$2^{2k} - 1 = 3h$$

$$3 \mid 2^{2k} - 1 \implies 3 \mid 2^{2k} - 1 \implies 3 \mid 2^{2k-1} = 1$$

$$\Rightarrow 2^{2k} - 1 = 3j \quad \text{for some } j$$

$$\Rightarrow 2^{2k-1} = 3j \quad \text{for some } j$$

$$\Rightarrow 2^{2k-1} = 12j$$

$$\Rightarrow 2^{2(k+1)} - 4 = 12j$$

$$\Rightarrow 2^{2(k+1)} - 4 = 12j$$

$$\Rightarrow 2^{2(k+1)} - 1 = 12j + 3$$

$$= 3(4j+1) \Rightarrow P(k+1)$$

$$\Rightarrow 2^{2(k+1)} - 1 = 3 + 4$$

$$= 3(2k-1)$$

For all
$$n \ge 1$$
: $1 + 2 + \dots + n = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$

$$P(n) = (|+\cdots+n| = \frac{h(n+1)}{2})^{-1}$$
We will prove $\forall n \geq 1 \text{ P(n)}$ by induction.

$$|+\cdots+n| = \frac{h(n+1)}{2}$$

$$|+\cdots+k| = \frac{k(k+1)}{2}$$

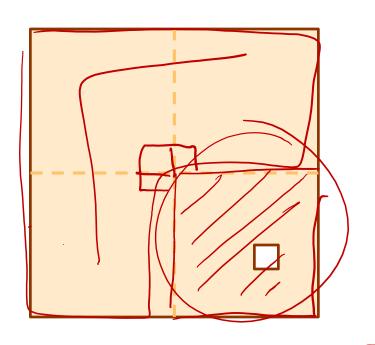
$$|+\cdots+k| = \frac{k(k+1)}{2} + (k+1)$$

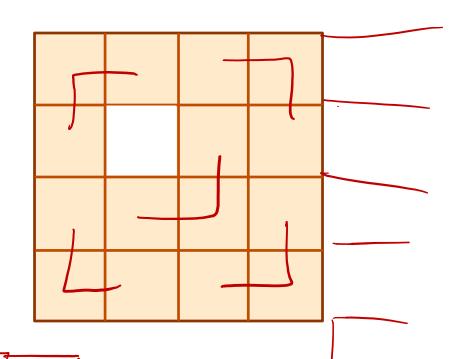
$$|+\cdots+k| = \frac{k(k+1)}{2}$$

checkerboard tiling

Prove that a $2^n \times 2^n$ checkerboard with one square removed

can be tiled with:





checkerboard tiling

Prove that a $2^n \times 2^n$ checkerboard with one square removed can be tiled with: