cse 311: foundations of computing #### Spring 2015 Lecture 14: Modular congruences **Goal:** Solve $ax \equiv b \pmod{m}$ for unknown x. Idea: Find a number z such that $za \equiv 1 \pmod{m}$. Multiply both sides by z: $$ax \equiv b \pmod{m}$$ $zax \equiv zb \pmod{m}$ $x \equiv zb \pmod{m}$ If such an element exists, we use the notation a^{-1} so that $$a^{-1}a \equiv aa^{-1} \equiv 1 \pmod{m}$$ a^{-1} is called the multiplicative inverse of a modulo m. # UHEN IS THERE AN INVERSE? Theorem: a has a multiplicative inverse modulo m if and only if gcd(a, m) = 1. # BEZOUT'S THEOREM If a and b are positive integers, then there exist integers s and t such that $$gcd(a,b) = sa + tb$$ For example: $1 = \gcd(25, 37) = 13 \cdot 27 + (-10) \cdot 35$ If gcd(a, m) = 1 then we can write $$1 = \gcd(a, m) = sa + tm$$ for some integers s, t. So $sa \equiv 1 \pmod{m}$. Thus $a^{-1} = s$ is the inverse! Can use Euclid's Algorithm to find s, t such that $$gcd(a, b) = sa + tb$$ • e.g. $$gcd(35, 27)$$: $35 = 1 \cdot 27 + 8$ $35 - 1 \cdot 27 = 8$ $27 = 3 \cdot 8 + 3$ $27 - 3 \cdot 8 = 3$ $8 = 2 \cdot 3 + 2$ $8 - 2 \cdot 3 = 2$ $3 = 1 \cdot 2 + 1$ $3 - 1 \cdot 2 = 1$ $2 = 2 \cdot 1 + 0$ Substitute back from the bottom $$1 = 3 - 1 \cdot 2 = 3 - 1 (8 - 2 \cdot 3) = (-1) \cdot 8 + 3 \cdot 3$$ $$= (-1) \cdot 8 + 3 (27 - 3 \cdot 8) = 3 \cdot 27 + (-10) \cdot 8$$ # SOLVING MODULAR EQUATIONS Solving $ax \equiv b \pmod{m}$ for unknown x when gcd(a, m) = 1. - 1. Find s such that sa + tm = 1 - 2. Compute $a^{-1} = s \mod m$, the multiplicative inverse of $a \mod m$ - 3. Set $x = (a^{-1} \cdot b) \mod m$ Solve: $7x \equiv 1 \pmod{26}$ ### multiplicative cipher: $f(x) = ax \mod m$ For a multiplicative cipher to be **invertible**: $$f: \{0, ..., m-1\} \to \{0, ..., m-1\}$$ $f(x) = ax \mod m$ must be one-to-one and onto. **Lemma:** If there is an integer b such that $ab \mod m = 1$, then the function $f(x) = ax \mod m$ is one-to-one and onto. ## could we prove this? If a and b are positive integers, then there exist integers s and t such that $$gcd(a,b) = sa + tb$$ Need a **new inference rule**. #### mathematical induction #### Method for proving statements about all integers ≥ 0 - A new logical inference rule! - It only applies over the natural numbers - The idea is to use the special structure of the naturals to prove things more easily - Particularly useful for reasoning about programs! ``` for(int i=0; i < n; n++) { ... } ``` Show P(i) holds after i times through the loop ``` public int f(int x) { if (x == 0) { return 0; } else { return f(x-1)+1; }} ``` • f(x) = x for all values of $x \ge 0$ naturally shown by induction. ### prove: for all n > 0, a is odd $\rightarrow a^n$ is odd Let n > 0 be arbitrary. Suppose that a is odd. We know that if a, b are odd, then ab is also odd. So: $$(\cdots ((a \cdot a) \cdot a) \cdot \cdots \cdot a) = a^n$$ [n times] Those "···"s are a problem! We're trying to say "we can use the same argument over and over..." We'll come back to this. #### induction is a rule of inference **Domain: Natural Numbers** $$P(0)$$ $$\forall k (P(k) \rightarrow P(k+1))$$ $\therefore \forall n P(n)$ ### using the induction rule in a formal proof $$P(0)$$ $$\forall k (P(k) \rightarrow P(k+1))$$ $$\therefore \forall n P(n)$$ - 1. Prove P(0) - 2. Let k be an arbitrary integer ≥ 0 - 3. Assume that P(k) is true - 4. ... - 5. Prove P(k+1) is true - 6. $P(k) \rightarrow P(k+1)$ - 7. \forall k (P(k) \rightarrow P(k+1)) - 8. ∀ n P(n) Direct Proof Rule Intro ∀ from 2-6 Induction Rule 1&7 ## format of an induction proof $$P(0)$$ $\forall k (P(k) \rightarrow P(k+1))$ $$\therefore \forall n P(n)$$ 1. Prove P(0) #### **Base Case** - 2. Let k be an arbitrary integer ≥ 0 - 3. Assume that P(k) is true 4. ... 5. Prove P(k+1) is true **Inductive Hypothesis** **Inductive Step** - 6. $P(k) \rightarrow P(k+1)$ - 7. \forall k (P(k) \rightarrow P(k+1)) 8. \forall n P(n) Direct Proof Rule Intro ∀ from 2-6 **Induction Rule 1&7** ### inductive proof in five easy steps #### **Proof:** - 1. "We will show that P(n) is true for every $n \ge 0$ by induction." - 2. "Base Case:" Prove P(0) - 3. "Inductive Hypothesis:" Assume P(k) is true for some arbitrary integer k ≥ 0" - 4. "Inductive Step:" Want to prove that P(k+1) is true: Use the goal to figure out what you need. Make sure you are using I.H. and point out where you are using it. (Don't assume P(k+1)!) 5. "Conclusion: Result follows by induction." $$1 + 2 + 4 + 8 + \cdots + 2^n$$ • $$1 + 2 + 4 = 7$$ • $$1 + 2 + 4 + 8 = 15$$ • $$1+2+4+8+16=31$$ #### Can we describe the pattern? $$1 + 2 + 4 + \cdots + 2^{n} = 2^{n+1} - 1$$ ## proving $1 + 2 + 4 + ... + 2^n = 2^{n+1} - 1$ - We could try proving it normally... - We want to show that $1 + 2 + 4 + \cdots + 2^n = 2^{n+1}$. - So, what do we do now? We can sort of explain the pattern, but that's not a proof... - We could prove it for n=1, n=2, n=3, ... (individually), but that would literally take forever... ### inductive proof in five easy steps #### **Proof:** - 1. "We will show that P(n) is true for every $n \ge 0$ by **induction**." - 2. "Base Case:" Prove P(0) - 3. "Inductive Hypothesis:" Assume P(k) is true for some arbitrary integer k ≥ 0" - 4. "Inductive Step:" Want to prove that P(k+1) is true: Use the goal to figure out what you need. Make sure you are using I.H. and point out where you are using it. (Don't assume P(k+1)!) 5. "Conclusion: Result follows by induction." proving $$1 + 2 + ... + 2^n = 2^{n+1} - 1$$ proving $$1 + 2 + ... + 2^n = 2^{n+1} - 1$$ - 1. Let P(n) be "1 + 2 + ... + $2^n = 2^{n+1} 1$ ". We will show P(n) is true for all natural numbers by induction. - 2. Base Case (n=0): $2^0 = 1 = 2 1 = 2^{0+1} 1$ - 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary $k \ge 0$. - 4. Induction Step: Goal: Show P(k+1), i.e. show $$1 + 2 + ... + 2^k + 2^{k+1} = 2^{k+2} - 1$$ $$1 + 2 + ... + 2^{k} = 2^{k+1} - 1$$ by IH Adding 2^{k+1} to both sides, we get: $$1 + 2 + ... + 2^{k} + 2^{k+1} = 2^{k+1} + 2^{k+1} - 1$$ Note that $2^{k+1} + 2^{k+1} = 2(2^{k+1}) = 2^{k+2}$. So, we have $1 + 2 + ... + 2^k + 2^{k+1} = 2^{k+2} - 1$, which is exactly P(k+1). 5. Thus P(k) is true for all $k \in \mathbb{N}$, by induction. #### another example of a pattern • $$2^0 - 1 = 1 - 1 = 0 = 3 \cdot 0$$ • $$2^2 - 1 = 4 - 1 = 3 = 3 \cdot 1$$ • $$2^4 - 1 = 16 - 1 = 15 = 3.5$$ • $$2^6 - 1 = 64 - 1 = 63 = 3 \cdot 21$$ • $$2^8 - 1 = 256 - 1 = 255 = 3.85$$ • ... prove: $3 \mid 2^{2n} - 1$ for all $n \ge 0$ For all $n \ge 1$: $1 + 2 + \dots + n = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$