
cse 311: foundations of computing

Spring 2015
Lecture 13:  Primes, GCDs, modular inverses



review: repeated squaring

Since a mod m ≡ a (mod m)  for any  a

we have a2 mod m   = (a mod m)2     mod m

and          a4 mod m   = (a2 mod m)2    mod m

and          a8 mod m  = (a4 mod m)2 mod m

and          a16 mod m  = (a8 mod m)2 mod m

and          a32 mod m  = (a16 mod m)2   mod m

Can compute 𝑎𝑘 mod𝑚 for 𝑘 = 2𝑖 in only 𝑖 steps



review: general algorithm

ModPow(a, k, m) should compute 𝑎𝑘 mod𝑚.

If 𝑘 == 0 then

return 1

If (𝑘 mod 2 == 0) then

return ModPow(𝑎2 mod 𝑚, 𝑘/2, 𝑚)

else

return (𝑎 × ModPow(𝑎, 𝑘 − 1,𝑚)) mod 𝑚

𝑘 =   81453   

=   10011111000101101 2

=   216 + 213 + 212 + 211 + 210 + 29 + 25 + 23 + 22 + 20

Total # of arithmetic operations ~ 4 × 16 = 64



primality

An integer p greater than 1 is called prime if the only 
positive factors of p are 1 and p.

A positive integer that is greater than 1 and is not prime is 
called composite.
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fundamental theorem of arithmetic

Every positive integer greater than 1 has a unique 
prime factorization

48 = 2 • 2 • 2 • 2 • 3

591 = 3 • 197

45,523 = 45,523

321,950 = 2 • 5 • 5 • 47 • 137

1,234,567,890 = 2 • 3 • 3 • 5 • 3,607 • 3,803



factorization

If 𝑛 is composite,  it has a factor of size at most 𝑛.



euclid’s theorem

There are an infinite number of primes.

Proof by contradiction:

Suppose that there are only a finite number of primes: 
𝑝1, 𝑝2, … , 𝑝𝑛



famous algorithmic problems

• Primality Testing

– Given an integer 𝑛, determine if 𝑛 is prime

– Fermat’s little theorem test:

If 𝑝 is prime and 𝑎 ≠ 0, then 𝑎𝑝−1 ≡ 1 (mod 𝑝)

• Factoring

– Given an integer 𝑛, determine the prime factorization of 𝑛



factoring

Factor the following 232 digit number [RSA768]:

123018668453011775513049495838496272077285
356959533479219732245215172640050726365751
874520219978646938995647494277406384592519
255732630345373154826850791702612214291346
167042921431160222124047927473779408066535
1419597459856902143413



123018668453011775513049495838496272077285356959533479219
732245215172640050726365751874520219978646938995647494277
406384592519255732630345373154826850791702612214291346167
042921431160222124047927473779408066535141959745985690214
3413

334780716989568987860441698482126908177047949837

137685689124313889828837938780022876147116525317

43087737814467999489

367460436667995904282446337996279526322791581643

430876426760322838157396665112792333734171433968

10270092798736308917



greatest common divisor

GCD(a, b):

Largest integer 𝑑 such that 𝑑 ∣ 𝑎 and 𝑑 ∣ 𝑏

– GCD(100, 125) = 

– GCD(17, 49) = 

– GCD(11, 66) =

– GCD(13, 0) = 

– GCD(180, 252) =



gcd and factoring

a = 23 • 3 • 52 • 7 • 11 = 46,200

b = 2 • 32 • 53 • 7 • 13 = 204,750

GCD(a, b) = 2min(3,1) • 3min(1,2) • 5min(2,3) • 7min(1,1) • 11min(1,0) • 13min(0,1)

Factoring is expensive!    
Can we compute GCD(a,b) without factoring?



useful GCD fact

If 𝑎 and 𝑏 are positive integers, then 
gcd 𝑎, 𝑏 = gcd(𝑏, 𝑎 mod 𝑏)

Proof:
By definition  𝑎 = 𝑎 div 𝑏 •𝑏 + (𝑎 mod 𝑏)
If 𝑑 ∣ 𝑎 and 𝑑 ∣ 𝑏 then 𝑑 ∣ 𝑎 mod 𝑏 .
If 𝑑 ∣ 𝑏 and 𝑑 ∣ 𝑎 mod 𝑏 then 𝑑 ∣ 𝑎.



euclid’s algorithm

GCD(660,126)

Repeatedly use the GCD fact to reduce numbers 
until you get GCD 𝑥, 0 = 𝑥.



GCD(x, y) = GCD(y, x mod y)

int GCD(int a, int b){ /* a >= b, b > 0 */
int tmp;
while (b > 0) {

tmp = a % b;
a = b;
b = tmp;

}
return a;

}

Example: GCD(660, 126)

euclid’s algorithm



Bezout’s theorem

If a and b are positive integers, then there exist 
integers s and t such that 

gcd(a,b) = sa + tb



extended euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that

gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

• e.g.  gcd(35,27):  35 = 1 • 27 + 8      35 - 1 • 27 = 8

27= 3 • 8 + 3           27- 3 • 8 = 3

8 = 2 • 3 + 2 8 - 2 • 3 = 2

3  = 1 • 2 + 1           3 - 1 • 2 = 1 

2  = 2 • 1 + 0  

• Substitute back from the bottom                      

1 = 3 - 1 • 2 =  3 – 1 (8 - 2 • 3) = (-1) • 8 + 3 • 3

= (-1) • 8 + 3 (27- 3 • 8 ) =   3 • 27 + (-10) • 8        

= 



multiplicative inverse mod 𝑚

Suppose GCD 𝑎,𝑚 = 1

By Bézout’s Theorem, there exist integers 𝑠 and 𝑡

such that 𝑠𝑎 + 𝑡𝑚 = 1.

𝑠 mod 𝑚 is the multiplicative inverse of 𝑎:

1 = 𝑠𝑎 + 𝑡𝑚 mod 𝑚 = 𝑠𝑎 mod 𝑚



solving modular equations

Solving 𝑎𝑥 ≡ 𝑏 (mod 𝑚) for unknown 𝑥 when 
gcd 𝑎,𝑚 = 1.

1. Find 𝑠 such that 𝑠𝑎 + 𝑡𝑚 = 1

2. Compute 𝑎−1 = 𝑠 mod 𝑚, the multiplicative inverse of 
𝑎 modulo 𝑚

3. Set 𝑥 = 𝑎−1 ⋅ 𝑏 mod 𝑚



example

Solve:  7𝑥 ≡ 1 (mod 26)


