cse 311: foundations of computing

Spring 2015

Lecture 13: Primes, GCDs, modular inverses


```
Since a \mod m \equiv a \pmod m for any a
```

```
we have a^2 \mod m = (a \mod m)^2 \mod m
and a^4 \mod m = (a^2 \mod m)^2 \mod m
and a^8 \mod m = (a^4 \mod m)^2 \mod m
and a^{16} \mod m = (a^8 \mod m)^2 \mod m
and a^{32} \mod m = (a^{16} \mod m)^2 \mod m
```

Can compute $a^k \mod m$ for $k = 2^i$ in only i steps

```
ModPow(a, k, m) should compute a^k \mod m.
    If k == 0 then
        return 1
    If (k \mod 2 == 0) then
        return ModPow(a^2 \mod m, k/2, m)
    else
        return (a \times \mathsf{ModPow}(a, k-1, m)) \bmod m
    k = 81453
        = (10011111000101101)_2
        = 2^{16} + 2^{13} + 2^{12} + 2^{11} + 2^{10} + 2^{9} + 2^{5} + 2^{3} + 2^{2} + 2^{0}
        Total # of arithmetic operations \sim 4 \times 16 = 64
```

primality

An integer *p* greater than 1 is called *prime* if the only positive factors of *p* are 1 and *p*.

A positive integer that is greater than 1 and is not prime is called *composite*.

An integer *p* greater than 1 is called *prime* if the only positive factors of *p* are 1 and *p*.

A positive integer that is greater than 1 and is not prime is called *composite*.

An integer *p* greater than 1 is called *prime* if the only positive factors of *p* are 1 and *p*.

A positive integer that is greater than 1 and is not prime is called *composite*.

Every positive integer greater than 1 has a unique prime factorization

```
= 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3
```

 $591 = 3 \cdot 197$

45,523 = 45,523

 $321,950 = 2 \cdot 5 \cdot 5 \cdot 47 \cdot 137$

 $1,234,567,890 = 2 \cdot 3 \cdot 3 \cdot 5 \cdot 3,607 \cdot 3,803$

FACTORIZATION

If n is composite, it has a factor of size at most \sqrt{n} .

There are an infinite number of primes.

Proof by contradiction:

Suppose that there are only a finite number of primes:

$$p_1, p_2, ..., p_n$$

FAMOUS ALGORITHMIC PROBLEMS

Primality Testing

- Given an integer n, determine if n is prime
- Fermat's little theorem test: If p is prime and $a \neq 0$, then $a^{p-1} \equiv 1 \pmod{p}$

Factoring

— Given an integer n, determine the prime factorization of n

Factor the following 232 digit number [RSA768]:

GREATEST COMMON DAVISOR

GCD(a, b):

Largest integer d such that $d \mid a$ and $d \mid b$

- GCD(100, 125) =
- GCD(17, 49) =
- GCD(11, 66) =
- GCD(13, 0) =
- GCD(180, 252) =

GCD AND FACTORING

$$a = 2^3 \cdot 3 \cdot 5^2 \cdot 7 \cdot 11 = 46,200$$

$$b = 2 \cdot 3^2 \cdot 5^3 \cdot 7 \cdot 13 = 204,750$$

 $GCD(a, b) = 2^{\min(3,1)} \cdot 3^{\min(1,2)} \cdot 5^{\min(2,3)} \cdot 7^{\min(1,1)} \cdot 11^{\min(1,0)} \cdot 13^{\min(0,1)}$

Factoring is expensive!

Can we compute GCD(a,b) without factoring?

USEFUL GCD FACT

If a and b are positive integers, then $gcd(a, b) = gcd(b, a \mod b)$

Proof:

```
By definition a = (a \operatorname{div} b) \cdot b + (a \operatorname{mod} b)

If d \mid a and d \mid b then d \mid (a \operatorname{mod} b).

If d \mid b and d \mid (a \operatorname{mod} b) then d \mid a.
```

EUCLID'S ALGORITHM

Repeatedly use the GCD fact to reduce numbers until you get GCD(x, 0) = x.

GCD(660,126)

EUCLAD'S ALGORATHA

GCD(x, y) = GCD(y, x mod y)

```
int GCD(int a, int b){ /* a >= b, b > 0 */
    int tmp;
    while (b > 0) {
        tmp = a % b;
        a = b;
        b = tmp;
    }
    return a;
}
```

Example: GCD(660, 126)

BEZOUT'S THEOREM

If a and b are positive integers, then there exist integers s and t such that

gcd(a,b) = sa + tb

Can use Euclid's Algorithm to find s, t such that

$$gcd(a, b) = sa + tb$$

• e.g.
$$gcd(35,27)$$
: $35 = 1 \cdot 27 + 8$ $35 - 1 \cdot 27 = 8$ $27 = 3 \cdot 8 + 3$ $27 - 3 \cdot 8 = 3$ $8 = 2 \cdot 3 + 2$ $8 - 2 \cdot 3 = 2$ $3 = 1 \cdot 2 + 1$ $3 - 1 \cdot 2 = 1$ $2 = 2 \cdot 1 + 0$

Substitute back from the bottom

$$1 = 3 - 1 \cdot 2 = 3 - 1 (8 - 2 \cdot 3) = (-1) \cdot 8 + 3 \cdot 3$$
$$= (-1) \cdot 8 + 3 (27 - 3 \cdot 8) = 3 \cdot 27 + (-10) \cdot 8$$

Suppose
$$GCD(a, m) = 1$$

By Bézout's Theorem, there exist integers s and t such that sa + tm = 1.

 $s \mod m$ is the multiplicative inverse of a:

$$1 = (sa + tm) \mod m = sa \mod m$$

SOLVING MODULAR EQUATIONS

Solving $ax \equiv b \pmod{m}$ for unknown x when gcd(a, m) = 1.

- 1. Find s such that sa + tm = 1
- 2. Compute $a^{-1} = s \mod m$, the multiplicative inverse of $a \mod m$
- 3. Set $x = (a^{-1} \cdot b) \mod m$

Solve: $7x \equiv 1 \pmod{26}$