cse 311: foundations of computing

Spring 2015
Lecture 11: Modular arithmetic and applications

FOR ADDED SECURITY, AFTER

WE ENCRYPT THE DATA STREAM,
ALAIH,  DONEHLNY, WE SEND IT THROUGH OQUR
DONEHLINL, -~ ALA'IH, NAVATO COPE TALKER-
ALATH, DONEHLIN, TUST
DONEHLII, DONEHLIN] \ 'NPE\%E wmésuggg
ALATH,  ALAIH, "ZERG AND "ONE"?
DONEHLINI,  ALAIH,
DDNEHLIHl DUNEHLINI, WHOA, HEY, KEEP
DUNEHHM YOUR WCE DOWN!
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arithmetic mod 7

(a+b)mod 7

a+; b
ax,b

(ax b)mod 7




Integers a, b, with a # 0. We say that a divides b iff
there is an integer k such that b = k a. The notation
a | b denotes “a divides b.”




Let a be an integer and d a positive integer.
Then there are unique integers g and r, with
O<r<d,suchthata=dqg+r.

g=adivd r=amodd

Note: r=0 evenifa <D0.
Not quite the same as a

o
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d.




modular congruence

Let a and b be integers, and m be a positive integer.
We say a is congruent to b modulo m if m divides a — b.
We use the notation a = b (mod m) to indicate that a is

congruent to b modulo m.




congruence and residues

Theorem: Let a and b be integers, and let m be a
positive integer. Then a = b (mod m) if and only if
a mod m = b mod m.

Proof: =
Suppose that a=b (mod m).
By definition: a=b (mod m) implies m | (a — b)
which by definition implies that a - b = km for some integer k.
Therefore a = b + km.
Taking both sides modulo m we get
a mod m = (b+km) mod m =b mod m



congruence and residues

Theorem: Let a and b be integers, and let m be a
positive integer. Then a = b (mod m) if and only if
a mod m = b mod m.

Proof: <
Suppose that a mod m = b mod m.
By the division theorem, a=mq+ (a mod m) and
b=ms+(bmodm) forsome integers q,s.
(mq + (@ mod m)) - (mr + (b mod m))
m(q —r) + (@ mod m - b mod m)
m(q—r) since amodm =bmodm
Therefore m | (a-b) and so a = b (mod m)

a-b



consistency of addition

Let m be a positive integer. If a = b (mod m) and
c=d(modm),thena+c=b+d(modm)

Suppose a=b (mod m) and ¢ = d (mod m).
Unrolling definitions gives us some k such that
a — b =km, and some j such thatc - d = jm.

Adding the equations together gives us
(a+c)-(b+d)=m(k+]). Now, re-applying the definition of
mod givesus a+c=b +d (mod m).



consistency of multiplication

Let m be a positive integer. If a = b (mod m) and
c =d (mod m), then ac = bd (mod m)

Suppose a=b (mod m) and ¢ =d (mod m).
Unrolling definitions gives us some k such that
a — b =km, and some  such thatc — d = jm.

Then,a=km+bandc=jm+d.
Multiplying both together gives us
ac = (km + b)(jm + d) = kim?2 + kmd + jmb + bd

Rearranging gives us ac — bd = m(kjm + kd + jb).
Using the definition of mod gives us ac = bd (mod m).



example

Let n be an integer.
Prove that n? = 0 (mod 4) or n> = 1 (mod 4)




example

Let n be an integer.
Prove that n? = 0 (mod 4) or n> = 1 (mod 4)

Case 1 (nis even):
Suppose n =0 (mod 2).
Then, n = 2k for some integer k.
So, n2 = (2k)2 = 4k2.
So, by definition of congruence, n?=0 (mod 4).

Case 2 (nis odd):
Suppose n=1 (mod 2).
Then, n = 2k + 1 for some integer k.
So,n2=(2k+1)2=4k2+ 4k +1=4(k2+Kk) +1.
So, by definition of congruence, n2=1 (mod 4).



n-bit unsigned integer representation

* Represent integer x as sum of powers of 2:
If x = 3= b,2" where each b. € {0,1)
then representationis b, ;--- b, b, b,

99=64+32+2+1
18=16+2

e Forn=8:

99: 0110 0011
18: 0001 0010



sign-magnitude integer representation

n-bit signed integers
Suppose —2"1 < x < 2™71
First bit as the sign, n-1 bits for the value

99=64+32+2+]1
18=16+2

Forn=8:

99: 0110 0011
-18: 1001 0010

Any problems with this representation?



two’'s complement representation

n-bit signed integers, first bit will still be the sign bit

Suppose 0 < x < 2™ 1,

x 1s represented by the binary representation of x
Suppose 0 < x < 2™ 1,

—x is represented by the binary representation of 2" — x

Key property: Two’s complement representation of any number y
IS equivalent to y mod 2" so arithmetic works mod 2"

09=64+32+2+1
18=16+2

Forn =8:;
99: 01100011
-18: 11101110



sign-magnitude vs. two's complement

-1 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 1
1111 1110 1101 1100 1011 1070 1001 0000 0OO1 0010 OO11T 0100 0101 0110 0117

Sign-Magnitude

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
1000 1001 1010 1011 71100 1101 1110 1111 0000 0001 0010 0011 0100 0101 0110 0111

Two's complement



two’s complement representation

« For0 < x < 2™ !, —xisrepresented by the binary
representation of 2" — x

« To compute this: Flip the bits of x then add 1:
— All U's string is 2" — 1, so
Flip the bits of x =replace xby 2" — 1 — x



basic applications of mod

» Hashing
 Pseudo random number generation
 Simple cipher



hashing

Scenario:
Map a small number of data values from a large domain
{0,1, ..., M — 1} into a small set of locations {0,1, ...,n — 1} so
one can quickly check if some value is present.

Input space Hash space



hashing

Scenario:

Map a small number of data values from a large domain
{0,1,...,M — 1} into a small set of locations {0,1, ...,n — 1} so
one can quickly check if some value is present

* hash(x) = x mod p for p a prime close ton
— or hash(x) = (ax + b) mod p

 Depends on all of the bits of the data
— helps avoid collisions due to similar values
— need to manage them if they occur



pseudo-random number generation

Linear Congruential method:

Xn+q1 = (@ x, + c) mod m

Choose random x,, a, ¢, m and produce
a long sequence of x,,'s

[good for some applications, really bad for many others]



simple ciphers

 Caesar cipher, A=1,B=2,...
— HELLO WORLD
« Shift cipher
— f(p) =(p + k) mod 26
— f~Hp) = (p —k) mod 26
 More general
— f~1(p) = (ap + b) mod 26



modular exponentiation mod 7
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modular exponentiation mod 7
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modular exponentiation mod 7
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