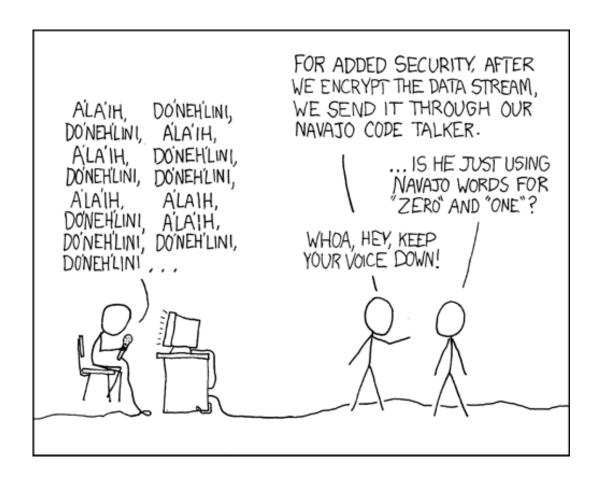
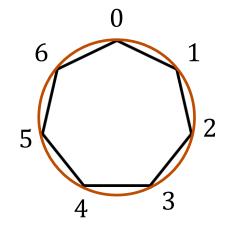
Spring 2015 Lecture 11: Modular arithmetic and applications



arithmetic mod 7

 $a +_7 b = (a + b) \mod 7$ $a \times_7 b = (a \times b) \mod 7$

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5



Х	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Integers a, b, with a \neq 0. We say that a **divides** b iff there is an integer k such that b = k a. The notation a | b denotes "a divides b." Let *a* be an integer and *d* a positive integer. Then there are *unique* integers *q* and *r*, with $0 \le r < d$, such that a = d q + r.

 $q = a \operatorname{div} d$ $r = a \operatorname{mod} d$

Note: $r \ge 0$ even if a < 0. Not quite the same as $a \ \% \ d$. Let a and b be integers, and m be a positive integer. We say *a* is **congruent** to *b* **modulo** *m* if *m* divides a - b. We use the notation $a \equiv b \pmod{m}$ to indicate that a is congruent to b modulo m. **Theorem:** Let a and b be integers, and let m be a positive integer. Then $a \equiv b \pmod{m}$ if and only if a mod m = b mod m.

Proof: \Rightarrow

```
Suppose that a ≡ b (mod m).
By definition: a ≡ b (mod m) implies m | (a - b)
which by definition implies that a - b = km for some integer k.
Therefore a = b + km.
Taking both sides modulo m we get
a mod m = (b+km) mod m = b mod m
```

Theorem: Let a and b be integers, and let m be a positive integer. Then $a \equiv b \pmod{m}$ if and only if a mod m = b mod m.

Proof: ⇐

```
Suppose that a mod m = b mod m.

By the division theorem, a = mq + (a \mod m) and

b = ms + (b \mod m) for some integers q,s.

a - b = (mq + (a \mod m)) - (mr + (b \mod m)))

= m(q - r) + (a \mod m - b \mod m)

= m(q - r) since a \mod m = b \mod m

Therefore m | (a-b) and so a \equiv b \pmod{m}
```

Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$

Suppose $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Unrolling definitions gives us some k such that a - b = km, and some j such that c - d = jm.

Adding the equations together gives us (a + c) - (b + d) = m(k + j). Now, re-applying the definition of mod gives us $a + c \equiv b + d \pmod{m}$. Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then **ac \equiv bd (mod m)**

```
Suppose a \equiv b \pmod{m} and c \equiv d \pmod{m}.
Unrolling definitions gives us some k such that
a - b = km, and some j such that c - d = jm.
```

```
Then, a = km + b and c = jm + d.
Multiplying both together gives us
ac = (km + b)(jm + d) = kjm<sup>2</sup> + kmd + jmb + bd
```

Rearranging gives us ac - bd = m(kjm + kd + jb). Using the definition of mod gives us $ac \equiv bd \pmod{m}$.

Let *n* be an integer. Prove that $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$

example

Let *n* be an integer. Prove that $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$

Case 1 (n is even):

Suppose $n \equiv 0 \pmod{2}$. Then, n = 2k for some integer k. So, $n^2 = (2k)^2 = 4k^2$. So, by definition of congruence, $n^2 \equiv 0 \pmod{4}$.

Case 2 (n is odd):

Suppose $n \equiv 1 \pmod{2}$. Then, n = 2k + 1 for some integer k. So, $n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 4(k^2 + k) + 1$. So, by definition of congruence, $n^2 \equiv 1 \pmod{4}$. • Represent integer x as sum of powers of 2: If $x = \sum_{i=0}^{n-1} b_i 2^i$ where each $b_i \in \{0,1\}$ then representation is $b_{n-1} \cdots b_2 b_1 b_0$

> 99 = 64 + 32 + 2 + 1 18 = 16 + 2

- For n = 8:
 - 99: 0110 001118: 0001 0010

n-bit signed integers Suppose $-2^{n-1} < x < 2^{n-1}$ First bit as the sign, n-1 bits for the value

99 = 64 + 32 + 2 + 1 18 = 16 + 2

For n = 8:

99: 0110 0011 -18: 1001 0010

Any problems with this representation?

n-bit signed integers, first bit will still be the sign bit

Suppose $0 \le x < 2^{n-1}$, *x* is represented by the binary representation of *x* Suppose $0 \le x \le 2^{n-1}$, -x is represented by the binary representation of $2^n - x$

Key property: Two's complement representation of any number y is equivalent to y mod 2ⁿ so arithmetic works mod 2ⁿ

```
99 = 64 + 32 + 2 + 1
18 = 16 + 2
```

For n = 8:

99: 0110 0011

-18: 1110 1110

sign-magnitude vs. two's complement

-7 -6 -5 -3 -2 -1 -4 Sign-Magnitude

-7 -6 -2 -1 -8 -5 -4 -3

Two's complement

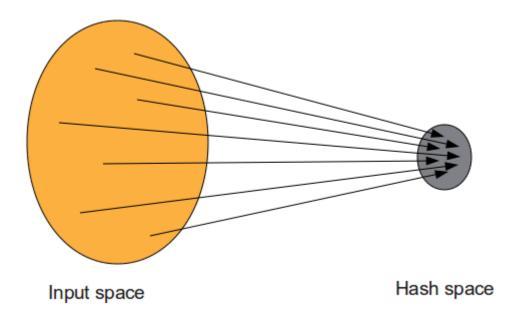
- For $0 < x \le 2^{n-1}$, -x is represented by the binary representation of $2^n x$
- To compute this: Flip the bits of x then add 1:
 - All 1's string is $2^n 1$, so

Flip the bits of $x = \text{replace } x \text{ by } 2^n - 1 - x$

- Hashing
- Pseudo random number generation
- Simple cipher

Scenario:

Map a small number of data values from a large domain $\{0, 1, ..., M - 1\}$ into a small set of locations $\{0, 1, ..., n - 1\}$ so one can quickly check if some value is present.



Scenario:

Map a small number of data values from a large domain $\{0, 1, ..., M - 1\}$ into a small set of locations $\{0, 1, ..., n - 1\}$ so one can quickly check if some value is present

- hash(x) = x mod p for p a prime close to n
 or hash(x) = (ax + b) mod p
- Depends on all of the bits of the data
 - helps avoid collisions due to similar values
 - need to manage them if they occur

Linear Congruential method:

$$x_{n+1} = (a x_n + c) \mod m$$

Choose random x_0 , a, c, m and produce a long sequence of x_n 's

[good for some applications, really bad for many others]

simple ciphers

- Caesar cipher, A = 1, B = 2, ...
 HELLO WORLD
- Shift cipher
 - $f(p) = (p + k) \mod 26$
 - $-f^{-1}(p) = (p-k) \mod 26$
- More general
 - $-f^{-1}(p) = (ap + b) \mod 26$

modular exponentiation mod 7

X	1	2	3	4	5	6
1						
2						
3						
4						
5						
6						

а	a ¹	a ²	a ³	a ⁴	a ⁵	a ⁶
1						
2						
3						
4						
5						
6						

modular exponentiation mod 7

Х	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

а	a ¹	a ²	a ³	a ⁴	a ⁵	a ⁶
1						
2						
3						
4						
5						
6						

Х	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

а	a ¹	a ²	a ³	a ⁴	a ⁵	a ⁶
1	1	1	1	1	1	1
2	2	4	1	2	4	1
3	3	2	6	4	5	1
4	4	2	1	4	2	1
5	5	4	6	2	3	1
6	6	1	6	1	6	1