### cse 311: foundations of computing

Spring 2015

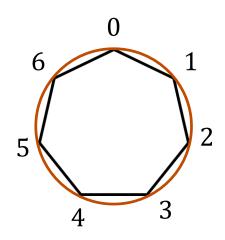
Lecture 11: Modular arithmetic and applications



#### arithmetic mod 7

$$a +_{7} b = (a + b) \mod 7$$
  
 $a \times_{7} b = (a \times b) \mod 7$ 

| + | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 0 |
| 2 | 2 | 3 | 4 | 5 | 6 | 0 | 1 |
| 3 | 3 | 4 | 5 | 6 | 0 | 1 | 2 |
| 4 | 4 | 5 | 6 | 0 | 1 | 2 | 3 |
| 5 | 5 | 6 | 0 | 1 | 2 | 3 | 4 |
| 6 | 6 | 0 | 1 | 2 | 3 | 4 | 5 |



| Х | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| 2 | 0 | 2 | 4 | 6 | 1 | 3 | 5 |
| 3 | 0 | 3 | 6 | 2 | 5 | 1 | 4 |
| 4 | 0 | 4 | 1 | 5 | 2 | 6 | 3 |
| 5 | 0 | 5 | 3 | 1 | 6 | 4 | 2 |
| 6 | 0 | 6 | 5 | 4 | 3 | 2 | 1 |

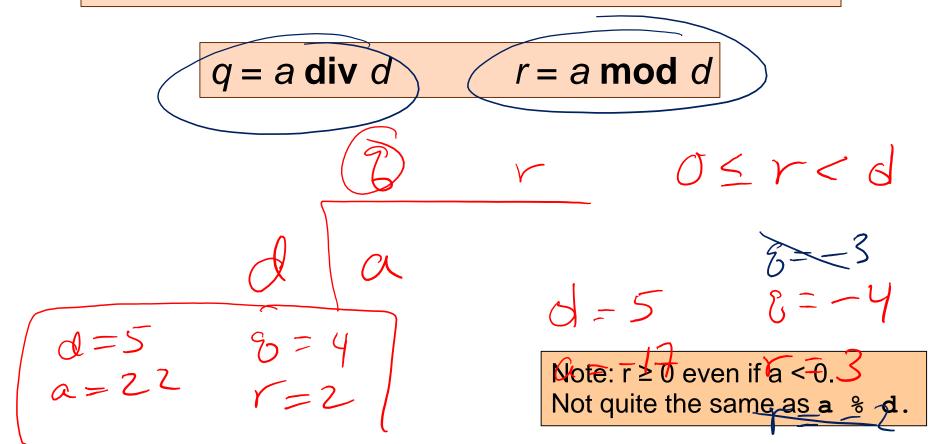
Integers a, b, with a  $\neq$  0. We say that a **divides** b iff there is an integer k such that b = k a. The notation a | b denotes "a divides b."

alb 
$$\rightleftharpoons$$
bis an integer mult
of a.

alb  $\rightleftharpoons$ 
alb  $\rightleftharpoons$ 
alb  $\rightleftharpoons$ 

#### review: division theorem

Let a be an integer and d a positive integer. Then there are *unique* integers q and r, with  $0 \le r < d$ , such that a = d q + r.



#### modular congruence

Let a and b be integers, and m be a positive integer. We say a is **congruent** to b **modulo** m if m divides a - b. We use the notation  $a \equiv b \pmod{m}$  to indicate that a is congruent to b modulo m.

$$7=2 \pmod{5}$$
 $7=-3$ 
 $=-F \pmod{5}$ 
 $=-13$ 
 $=2 \pmod{5}$ 
 $=2 \pmod{5}$ 
 $=3 \pmod{5}$ 
 $=3 \pmod{5}$ 
 $=3 \pmod{5}$ 
 $=3 \pmod{5}$ 
 $=3 \pmod{5}$ 

### congruence and residues

**Theorem:** Let a and b be integers, and let m be a positive integer. Then  $a \equiv b \pmod{m}$  if and only if a mod  $m = b \pmod{m}$ .

a mod 
$$m$$
 = committed representatione

 $a \equiv b \pmod{m} \iff a \mod m = b \mod m$ 
 $a \equiv b \pmod{m} \implies m \pmod{a-b}$ 
 $a \equiv b \pmod{m} \implies m \pmod{a-b}$ 
 $a = b + km$ 
 $a = b + km$ 
 $a \mod m + b \mod m$ 
 $a \mod m + b \mod m$ 

#### congruence and residues

**Theorem:** Let a and b be integers, and let m be a positive integer. Then  $a \equiv b \pmod{m}$  if and only if a mod  $m = b \pmod{m}$ .

a mod 
$$m = b \mod m \implies a = b \pmod m$$

$$a = m (a \operatorname{div} m) + (a \operatorname{mod} m) \implies m | a = b$$

$$b = m (b \operatorname{div} m) + (b \operatorname{mod} m) \implies a - b = l \operatorname{lem}$$

$$a - b = l \operatorname{lem}$$

$$(a \operatorname{mod} m - b \operatorname{mod} m) \implies a - b = l \operatorname{lem}$$

$$(a \operatorname{mod} m - b \operatorname{mod} m) \implies a - b = l \operatorname{lem}$$

$$(a \operatorname{mod} m - b \operatorname{div} m) \implies a - b = l \operatorname{lem}$$

$$(a \operatorname{mod} m - b \operatorname{div} m) \implies a - b = l \operatorname{lem}$$

$$a - b = l \operatorname{lem}$$

$$(a \operatorname{mod} m - b \operatorname{div} m) \implies a - b = l \operatorname{lem}$$

$$a - b = l \operatorname{lem}$$

$$(a \operatorname{mod} m - b \operatorname{div} m) \implies a - b = l \operatorname{lem}$$

$$a - b = l \operatorname{le$$

(a+b) mod A = m B

## consistency of addition

Let m be a positive integer. If  $a \equiv b \pmod{m}$  and  $c \equiv d \pmod{m}$ , then  $a + c \equiv b + d \pmod{m}$ 

$$a = b \pmod{m}$$

$$c = d \pmod{m}$$

$$a + c - b - d$$

$$= (k+j)m$$

$$m = (k+j)m$$

$$m = k+j$$

#### consistency of multiplication

Let m be a positive integer. If  $a \equiv b \pmod{m}$  and  $c \equiv d \pmod{m}$ , then  $ac \equiv bd \pmod{m}$ 

Suppose  $a \equiv b \pmod{m}$  and  $c \equiv d \pmod{m}$ . Unrolling definitions gives us some k such that a - b = km, and some j such that c - d = jm.

Then, a = km + b and c = jm + d.

Multiplying both together gives us

 $ac = (km + b)(jm + d) = kjm^2 + kmd + jmb + bd$ 

Rearranging gives us ac - bd = m(kjm + kd + jb). Using the definition of mod gives us ac  $\equiv$  bd (mod m).

$$\left(N^{2} = \frac{3}{2} \pmod{8}\right) = \frac{011,415}{2} \text{ example}$$

#### Let n be an integer.

Prove that  $n^2 \equiv 0 \pmod{4}$  or  $n^2 \equiv 1 \pmod{4}$ 

Case analysis:
$$0^{2} \equiv 0 \pmod{4}$$

$$- n \equiv 0 \pmod{4}$$

$$1^{2} \equiv 1 \pmod{4}$$

$$- n \equiv 1 \pmod{4}$$

$$2^{2} \equiv 0 \pmod{4}$$

$$- n \equiv 2 \pmod{4}$$

$$3^{2} \equiv 1 \pmod{4}$$

$$- n \equiv 3 \pmod{4}$$

$$- n \equiv 3 \pmod{4}$$

Pf #1: n even 
$$\Rightarrow$$
 n=2k for some int k
$$\Rightarrow n^2 = U k^2$$

$$\Rightarrow n^2 = 0 \pmod{4}$$

$$n \text{ odd} \Rightarrow n=2k+1 \text{ for some int } k \Rightarrow 4k^2+4k+1 = n^2$$

$$\Rightarrow n^2 = 1 \pmod{4}.$$

#### example

Let n be an integer.

Prove that  $n^2 \equiv 0 \pmod{4}$  or  $n^2 \equiv 1 \pmod{4}$ 

#### Case 1 (n is even):

Suppose  $n \equiv 0 \pmod{2}$ .

Then, n = 2k for some integer k.

So,  $n^2 = (2k)^2 = 4k^2$ .

So, by definition of congruence,  $n^2 \equiv 0 \pmod{4}$ .

#### Case 2 (n is odd):

Suppose  $n \equiv 1 \pmod{2}$ .

Then, n = 2k + 1 for some integer k.

So,  $n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 4(k^2 + k) + 1$ .

So, by definition of congruence,  $n^2 \equiv 1 \pmod{4}$ .

## n-bit unsigned integer representation

• Represent integer x as sum of powers of 2:

If 
$$x = \sum_{i=0}^{n-1} b_i 2^i$$
 where each  $b_i \in \{0,1\}$  then representation is  $b_{n-1} \cdots b_2 b_1 b_0$ 

$$99 = 64 + 32 + 2 + 1$$
  
 $18 = 16 + 2$ 

• For n = 8:

99: 0110 0011

18: 0001 0010

# sign-magnitude integer representation

#### n-bit signed integers

Suppose  $-2^{n-1} < x < 2^{n-1}$ 

First bit as the sign, n-1 bits for the value

0000 0000

For n = 8:

99: 0110 0011

-18: 1001 0010

Any problems with this representation?

## two's complement representation

n-bit signed integers, first bit will still be the sign bit

Suppose 
$$0 \le x < 2^{n-1}$$
,  $x$  is represented by the binary representation of  $x$  Suppose  $0 \le x \le 2^{n-1}$ ,  $-x$  is represented by the binary representation of  $2^n - x$ 

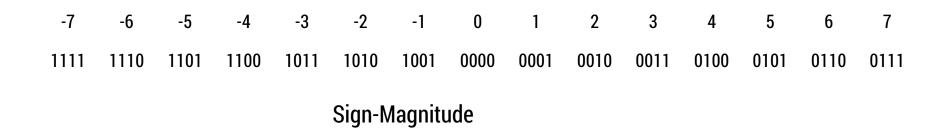
**Key property:** Two's complement representation of any number y is equivalent to y mod 2<sup>n</sup> so arithmetic works mod 2<sup>n</sup>

$$99 = 64 + 32 + 2 + 1$$
  
 $18 = 16 + 2$ 

$$256 - 1f = 23f$$

$$= 2448 + 32 + 64 + 128$$

## sign-magnitude vs. two's complement



Two's complement

## two's complement representation

100 000

- For  $0 < x \le 2^{n-1}$ , -x is represented by the binary representation of  $2^n x$
- To compute this: Flip the bits of x then add 1:  $\underbrace{0 \times 2 \times 6}_{0 \times 2 \times 6} \underbrace{0 \times 2 \times 6}_{0 \times 2 \times 6}$ 
  - All 1's string is  $2^n 1$ , so

Flip the bits of  $x = \text{replace } x \text{ by } 2^n - 1 - x$ 

$$0 < x \leq 2^{n\gamma}$$

$$-X = 1(2^{n}-x)_{2}$$
Flip and bits of  $x \rightarrow 2^{n}-1-x$ 

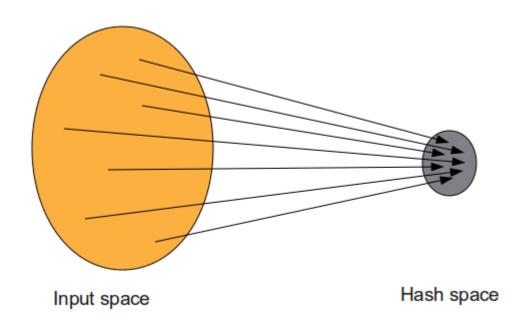
## basic applications of mod

- Hashing
- Pseudo random number generation
- Simple cipher

#### hashing

#### Scenario:

Map a small number of data values from a large domain  $\{0, 1, ..., M-1\}$  into a small set of locations  $\{0, 1, ..., n-1\}$  so one can quickly check if some value is present.



#### Scenario:

Map a small number of data values from a large domain  $\{0, 1, ..., M-1\}$  into a small set of locations  $\{0, 1, ..., n-1\}$  so one can quickly check if some value is present

- $hash(x) = x \mod p$  for p a prime close to n
  - or hash $(x) = (ax + b) \mod p$
- Depends on all of the bits of the data
  - helps avoid collisions due to similar values
  - need to manage them if they occur

## pseudo-random number generation

#### **Linear Congruential method:**

$$x_{n+1} = (a x_n + c) \bmod m$$

Choose random  $x_0$ , a, c, m and produce a long sequence of  $x_n$ 's

#### simple ciphers

- Caesar cipher, A = 1, B = 2, . . .
  - HELLO WORLD
- Shift cipher

$$- f(p) = (p + k) \mod 26$$

$$-f^{-1}(p) = (p-k) \mod 26$$

More general

$$-f^{-1}(p) = (ap + b) \mod 26$$

# modular exponentiation mod 7

| Х | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|
| 1 |   |   |   |   |   |   |
| 2 |   |   |   |   |   |   |
| 3 |   |   |   |   |   |   |
| 4 |   |   |   |   |   |   |
| 5 |   |   |   |   |   |   |
| 6 |   |   |   |   |   |   |

| а | a <sup>1</sup> | a <sup>2</sup> | a <sup>3</sup> | a <sup>4</sup> | <b>a</b> <sup>5</sup> | a <sup>6</sup> |
|---|----------------|----------------|----------------|----------------|-----------------------|----------------|
| 1 |                |                |                |                |                       |                |
| 2 |                |                |                |                |                       |                |
| 3 |                |                |                |                |                       |                |
| 4 |                |                |                |                |                       |                |
| 5 |                |                |                |                |                       |                |
| 6 |                |                |                |                |                       |                |

# modular exponentiation mod 7

| Х | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|
| 1 | 1 | 2 | 3 | 4 | 5 | 6 |
| 2 | 2 | 4 | 6 | 1 | 3 | 5 |
| 3 | 3 | 6 | 2 | 5 | 1 | 4 |
| 4 | 4 | 1 | 5 | 2 | 6 | 3 |
| 5 | 5 | 3 | 1 | 6 | 4 | 2 |
| 6 | 6 | 5 | 4 | 3 | 2 | 1 |

| а | a <sup>1</sup> | a <sup>2</sup> | a <sup>3</sup> | a <sup>4</sup> | <b>a</b> <sup>5</sup> | a <sup>6</sup> |
|---|----------------|----------------|----------------|----------------|-----------------------|----------------|
| 1 |                |                |                |                |                       |                |
| 2 |                |                |                |                |                       |                |
| 3 |                |                |                |                |                       |                |
| 4 |                |                |                |                |                       |                |
| 5 |                |                |                |                |                       |                |
| 6 |                |                |                |                |                       |                |

# modular exponentiation mod 7

| Х | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|
| 1 | 1 | 2 | 3 | 4 | 5 | 6 |
| 2 | 2 | 4 | 6 | 1 | 3 | 5 |
| 3 | 3 | 6 | 2 | 5 | 1 | 4 |
| 4 | 4 | 1 | 5 | 2 | 6 | 3 |
| 5 | 5 | 3 | 1 | 6 | 4 | 2 |
| 6 | 6 | 5 | 4 | 3 | 2 | 1 |

| а | a <sup>1</sup> | a <sup>2</sup> | a <sup>3</sup> | a <sup>4</sup> | a <sup>5</sup> | a <sup>6</sup> |
|---|----------------|----------------|----------------|----------------|----------------|----------------|
| 1 | 1              | 1              | 1              | 1              | 1              | 1              |
| 2 | 2              | 4              | 1              | 2              | 4              | 1              |
| 3 | 3              | 2              | 6              | 4              | 5              | 1              |
| 4 | 4              | 2              | 1              | 4              | 2              | 1              |
| 5 | 5              | 4              | 6              | 2              | 3              | 1              |
| 6 | 6              | 1              | 6              | 1              | 6              | 1              |