cse 311: foundations of computing

Spring 2015 Lecture 9: Set theory

some common sets

We write $2 \in E$; $3 \notin E$.

set theory

- Formal treatment dates from late 19th century
- · Direct ties between set theory and logic
- Important foundational language

definitions

· A and B are equal if they have the same elements

$$\mathsf{A} = \mathsf{B} \equiv \forall x (x \in \mathsf{A} \leftrightarrow x \in \mathsf{B})$$

• A is a subset of B if every element of A is also in B

$$\mathsf{A} \subseteq \mathsf{B} \equiv \forall \ x \ (x \in \mathsf{A} \rightarrow x \in \mathsf{B})$$

definitions

· A and B are equal if they have the same elements

 \mathbb{N} is the set of Natural Numbers; $\mathbb{N} = \{0, 1, 2, ...\}$

 $\begin{array}{l} \mathbb{Z} \text{ is the set of Integers; } \mathbb{Z} = \{...,2,-1,0,1,2,...\} \\ \mathbb{Q} \text{ is the set of Rational Numbers; e.g. } , , , , , , , 32/48 \\ \mathbb{R} \text{ is the set of Real Numbers; e.g. } , , -17, 32/48, \pi \\ [n] \text{ is the set } \{1,2,...,n\} \text{ when n is a natural number} \end{array}$

EXAMPLES Are these sets?

A = {1, 1}

B = {1, 3, 2}

 $C = \{\Box, 1\}$

D = {{}, 17}

E = {1, 2, 7, cat, dog, Ø, α}

 $\{\} = \emptyset$ is the **empty set**; the *only* set with no elements

$$\mathsf{A} = \mathsf{B} \equiv \forall x (x \in \mathsf{A} \leftrightarrow x \in \mathsf{B})$$

• A is a subset of B if every element of A is also in B

$$\mathsf{A} \subseteq \mathsf{B} \equiv \forall \ x \ (x \in \mathsf{A} \rightarrow x \in \mathsf{B})$$

• Note: $(A = B) \equiv (A \subseteq B) \land (B \subseteq A)$

building sets from predicates

• The following says "S is the set of all x's where P(x) is true."

$$S = \{x : P(x)\}$$

• The following says "S is the set of those elements of A for which P(x) is true."

 $S = \{x \in A : P(x)\}$

- "The set of all the real numbers less than one" $\{x \in \mathbb{R} : x < 1\}$
- "The set of all powers of two"

$$\{x\in\mathbb{N}:\ \exists\ j\ (x\ =2^j)\}$$

	1 1	1 A 1	()
it's Boolean	algebra	again!	(yay?)

- Definition for ∪ based on ∨
- Definition for ∩ based on ∧
- Complement works like ---

empty set and power set

Power set of a set A = set of all subsets of A

 $\mathcal{P}(A) = \{ B : B \subseteq A \}$

e.g. Days = $\{M, W, F\}$

 $\begin{aligned} \mathcal{P}(\text{Days}) &= \{ \varnothing, \\ \{M\}, \{W\}, \{F\}, \\ \{M, W\}, \{W, F\}, \{M, F\}, \\ \{M, W, F\} \} \end{aligned}$

e.g. $\mathcal{P}(\emptyset) = ?$

de Morgan's laws

$$A \times B = \{ (a, b) : a \in A, b \in B \}$$

cartesian product

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Proof technique: To show C = D show $x \in C \rightarrow x \in D$ and $x \in D \rightarrow x \in C$

Russell's paradox

distributive laws

representing sets using bits

- Suppose universe U is $\{1, 2, \dots, n\}$
- Can represent set $B \subseteq U$ as a vector of bits: $b_1b_2 \cdots b_n$ where $b_i = 1$ when $i \in B$ $b_i = 0$ when $i \notin B$ – Called the *characteristic vector* of set B
- Given characteristic vectors for A and B
 What is characteristic vector for A ∪ B? A ∩ B?

unix/linux file permissions

a useful identity

- ls -l
 - drwxr-xr-x ... Documents/ -rw-r--r-- ... file1
- Permissions maintained as bit vectors

 Letter means bit is 1
 "--" means bit is 0.

			bitwise operations
	01101101	Java:	z=x y
v	00110111		
	01111111		
	00101010	.lava [.]	7=*£v
~	00001111	ouru.	2-109
	00001010		
	01101101	Java:	z=x^y
Ð	00110111		
	01011010		

- If x and y are bits: $(x \oplus y) \oplus y = ?$
- What if x and y are bit-vectors?

private key cryptography

- Alice wants to communicate message secretly to Bob so that eavesdropper Eve who hears their conversation cannot tell what Alice's message is.
- Alice and Bob can get together and privately share a secret key K ahead of time.

- one-time pad
- Alice and Bob privately share random n-bit vector K
 Eve does not know K
- Later, Alice has n-bit message m to send to Bob
 - Alice computes C = m \oplus K
 - Alice sends C to Bob
 - Bob computes m = C \oplus K which is (m \oplus K) \oplus K
- Eve cannot figure out m from C unless she can guess K

