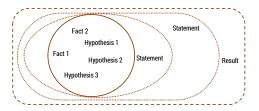
cse 311: foundations of computing

Spring 2015 Lecture 8: More Proofs

review: proofs

- · Start with hypotheses and facts
- · Use rules of inference to extend set of facts
- · Result is proved when it is included in the set



review: Modus Ponens

- If p and $p \rightarrow q$ are both true then q must be true
- Write this rule as $p, p \rightarrow q$ $\therefore q$
- Given:
 - If it is Wednesday then you have a 311 class today.It is Wednesday.
- Therefore, by modus ponens: – You have a 311 class today.

• Each inference rule is written as:

...which means that if both A and B are true then you can infer C and you can infer D.

- For rule to be correct $(A \land B) \rightarrow C$ and $(A \land B) \rightarrow D$ must be a tautologies

• Sometimes rules don't need anything to start with. These rules are called axioms:

- e.g. Excluded Middle Axiom

∴ p∨¬p

review: propositional inference rules

Excluded middle plus two inference rules per binary connective, one to eliminate it and one to introduce it

<u>p∧q</u> ∴p,q	<u>p, q</u> ∴ p ∧ q
<u>p∨q, ¬p</u> ∴q	$\frac{p}{\mathbf{\cdot} p \lor q, q \lor p}$
$\frac{p, p \to q}{\therefore q}$	$ \begin{array}{c} p \Rightarrow q \\ \hline p \Rightarrow q \end{array} $ Direct Proof Rule Not like other rules

review: direct proof of an implication

- $p \Rightarrow q$ denotes a proof of q given p as an assumption
- The direct proof rule: If you have such a proof then you can conclude that p → q is true

Example:

ample:		proof subroutine
	1. p	assumption
	2. p∨q	intro for \lor from 1
3. p	\rightarrow (p \vee q)	direct proof rule

review: proofs using the direct proof rule

Show that $p \rightarrow r$ follows from q and $(p \land q) \rightarrow r$

1.	q	given
2.	$(p \land q) \mathop{\rightarrow} r$	given
	3. p	assumption
	4. p∧q	from 1 and 3 via Intro \wedge rule
	5. r	modus ponens from 2 and 4
6.	$p \rightarrow r$	direct proof rule

P(c) for some c	∀x P(x)	
∴∃x P(x)	\therefore P(a) for any a	
"Let a be anything*"P(a)	∃x P(x)	
∴ ∀x P(x)	∴ P(c) for some special** c	
* in the domain of P	** By special, we mean that c is a name for a value where P(c) is true. We can't use anything else about that value, so c has to be a NEW variable!	

review: inference rules for quantifiers

proofs using quantifiers

"There exists an even prime number."

First, we translate into predicate logic:

 $\exists x (Even(x) \land Prime(x))$

1.	Even(2)	Fact (math)
2.	Prime(2)	Fact (math)
3.	Even(2) <pre> A Prime(2) </pre>	Intro <a>. 1, 2
4.	$\exists x (Even(x) \land Prime(x))$	Intro ∃: 3

proofs using quantifiers

1.	Even(2)	Fact* (math)

- 2. Prime(2) Fact* (math)
- 3. Even(2) ^ Prime(2) Intro ^: 1, 2
- 4. $\exists x (Even(x) \land Prime(x))$ Intro $\exists : 3$

Those first two lines are sort of cheating; we should prove those "facts".

1. 2 = 2*1

- 2. Even(2)
- 3. There are no integers between 1 and 2
- 4. 2 is an integer
- 5. Prime(2)

Definition of Multiplication Intro ∃: 1 Definition of Integers Definition of 2 Intro ∧: 3, 4

proofs using quantifiers

1.	2 = 2*1	Definition of Multiplication
2.	Even(2)	Intro ∃: 1
3.	There are no integers between 1 and 2	Definition of Integers
4.	2 is an integer	Definition of 2
5.	Prime(2)	Intro <a>. 3, 4
6.	Even(2)	Intro <a>. 2, 5
7.	$\exists x (Even(x) \land Prime(x))$	Intro ∃: 7

English version:

"Note that 2 = 2*1 by definition of multiplication. It follows that there is a y such that 2 = 2y; so, 2 is even. Furthermore, 2 is an integer, and there are no integers between 1 and 2; so, by definition of a prime number, 2 is prime. Since 2 is both even and prime, $\exists x \ (Even(x) \land Prime(x))$."

Prime(x): x is an integer > 1 and x is not a multiple of any integer strictly between 1 and x Even(x) = ∃y (x=2y)

even and odd

Prove: "The square of every even number is even." Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

even and odd

Prove: "The square of every even number is even."

Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

- 1. Even(a) Assumption: a arbitrary integer
- Definition of Even 2. ∃y (a = 2y) 3. a = 2<mark>c</mark> By elim \exists : c special depends on a
- 4. $a^2 = 4c^2 = 2(2c^2)$ Algebra
- 5. ∃y (a² = 2y) By intro∃rule
- 6. Even(a²) Definition of Even
- 7. Even(a) \rightarrow Even(a²) Direct proof rule
- 8. $\forall x (Even(x) \rightarrow Even(x^2))$ By intro \forall rule

Even(x) = $\exists y (x=2y)$ Odd(x) = $\exists y (x=2y+1)$ Domain: Integers

even and odd

Prove: "The square of every odd number is odd" English proof of: $\forall x (Odd(x) \rightarrow Odd(x^2))$

Let x be an odd number.

Then x = 2k + 1 for some integer k (depending on x) Therefore $x^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2+2k) + 1$. Since 2k² + 2k is an integer, x² is odd.

counterexamples

To *disprove* $\forall x P(x)$ find a counterexample:

- some c such that $\neg P(c)$
- works because this implies $\exists x \neg P(x)$ which is equivalent to $\neg \forall x P(x)$

proof by contrapositive: another strategy for implications

If we assume $\neg q$ and derive $\neg p$, then we have proven $\neg q \rightarrow \neg p$, which is the same as $p \rightarrow q$.

1. –q	Assumption
3. —р	
4. $\neg q \rightarrow \neg p$	Direct Proof Rule
5. p \rightarrow q	Contrapositive

proof by contradiction: one way to prove $\neg p$

even and odd

Domain: Integers

If we assume p and derive False (a contradiction), then we have proved -p.

1. p	assumption
3. F	
4. $p \rightarrow F$	direct Proof rule
5. ¬p∨ F	equivalence from 4
6. – <mark>p</mark>	equivalence from 5

Prove: "No integer is both even and odd."		
English proof of: $\neg \exists x (Even(x) \land Odd(x))$		
$\equiv \forall x \neg (Even(x))$	∿Odd(x))	
We proceed by contradiction:		
Let x be any integer and suppose that it is both e	even and odd.	
Then x=2k for some integer k and x=2m+1 for some integer m. Therefore 2k=2m+1 and hence k=m+½.		
But two integers cannot differ by $\frac{1}{2}$ so this is a c	contradiction.	
So, no integer is both even an odd.		
	$Even(x) \equiv \exists y (x=2y)$	
	$Odd(x) \equiv \exists y (x=2y+1)$	

3

rational numbers

• A real number x is *rational* iff there exist integers p and q with $q \neq 0$ such that x=p/q.

 $\label{eq:Rational(x) = \exists p \; \exists q \; \; ((x=p/q) \land Integer(p) \land Integer(q) \land q \neq 0)$

- Prove:
 - $-\,$ If x and y are rational then xy is rational
 - $-\,$ If x and y are rational then x+y is rational

- rational numbers
- A real number x is *rational* iff there exist integers p and q with $q \neq 0$ such that x=p/q.

 $Rational(x) \equiv \exists p \; \exists q \; ((x=p/q) \land Integer(p) \land Integer(q) \land q \neq 0)$

· Prove: If x and y are rational then xy is rational

 $\forall x \ \forall y \ ((Rational(x) \land Rational(y)) \rightarrow Rational(xy))$

Domain: Real numbers

rational numbers

 A real number x is rational iff there exist integers p and q with q ≠ 0 such that x=p/q.

Rational(x) = $\exists p \exists q ((x=p/q) \land Integer(p) \land Integer(q) \land q \neq 0)$

You might try to prove:

- If x and y are rational then xy is rational
- If x and y are rational then x+y is rational
- If x and y are rational then x/y is rational

Domain: Real numbers

proofs summary

- Formal proofs follow simple well-defined rules and should be easy to check
 - In the same way that code should be easy to execute
- English proofs correspond to those rules but are designed to be easier for humans to read
 - Easily checkable in principle
- Simple proof strategies already do a lot
 - Later we will cover a specific strategy that applies to loops and recursion (mathematical induction)