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cse 311: foundations of computing

Spring 2015
Lecture 8:  More Proofs

review: proofs

• Start with hypotheses and facts

• Use rules of inference to extend set of facts

• Result is proved when it is included in the set

Fact 1

Fact 2

Hypothesis 3

Hypothesis 2

Hypothesis 1

Statement

Statement

Result

review: Modus Ponens

• If p and p  q are both true then q must be true

• Write this rule as

• Given: 

– If it is Wednesday then you have a 311 class today. 

– It is Wednesday.

• Therefore,  by modus ponens:  

– You have a 311 class today.

p, p  q
∴ q

review: inference rules

• Each inference rule is written as:

...which means that if both A and B

are true then you can infer C and

you can infer D.
– For rule to be correct  (A  B)  C  and 

(A  B)  D  must be a tautologies

• Sometimes rules don’t need anything to start with.  These rules 
are called axioms:
– e.g. Excluded Middle Axiom

A, B  
∴ C,D

∴ p p 

review: propositional inference rules

Excluded middle plus two inference rules per binary connective, one 
to eliminate it and one to introduce it

p  q
∴ p, q

p, q   
∴ p  q 

p           
∴ p  q, q  p

p  q , p
∴ q

p, p  q
∴ q

p  q  
∴ p  q

Direct Proof Rule
Not like other rules

review: direct proof of an implication

• p  q denotes a proof of q given p as an assumption

• The direct proof rule:

If you have such a proof then you can conclude        

that p  q is true

Example:

1.   p assumption
2.   p  q      intro for  from 1                             

3.   p  (p  q)     direct proof rule

proof subroutine
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review: proofs using the direct proof rule

Show that p  r follows from q and (p  q)  r

1.     q given

2. (p  q)  r     given

3.   p assumption

4.   p  q from 1 and 3 via Intro  rule    

5.   r modus ponens from 2 and 4

6.     p  r              direct proof rule

review: inference rules for quantifiers

∴ x P(x)

x P(x)        

∴ x P(x)

x P(x)               

* in the domain of P 

P(c) for some c

∴ P(a) for any a

“Let a be anything*”...P(a)

∴ P(c) for some special** c

** By special, we mean that c is a name for 
a value where P(c) is true. We can’t use 
anything else about that value, so c has to 
be a NEW variable!

proofs using quantifiers

“There exists an even prime number.”

First, we translate into predicate logic:

x (Even(x)  Prime(x))

1.  Even(2) Fact (math)

2. Prime(2) Fact (math)

3. Even(2)  Prime(2) Intro : 1, 2

4. x (Even(x)  Prime(x)) Intro : 3

proofs using quantifiers

1.  Even(2) Fact* (math)

2. Prime(2) Fact* (math)

3. Even(2)  Prime(2) Intro : 1, 2

4. x (Even(x)  Prime(x))   Intro : 3

Those first two lines are sort of cheating; we should prove those “facts”.

Prime(x): x is an integer > 1 and x is not a multiple of any integer strictly
between 1 and x 

Even(x)  y (x=2y)     

1. 2 = 2*1 Definition of Multiplication

2. Even(2) Intro : 1

3. There are no integers between 1 and 2 Definition of Integers

4. 2 is an integer Definition of 2

5. Prime(2) Intro : 3, 4

proofs using quantifiers

1. 2 = 2*1 Definition of Multiplication

2. Even(2) Intro : 1

3. There are no integers between 1 and 2 Definition of Integers

4. 2 is an integer Definition of 2

5. Prime(2) Intro : 3, 4

6. Even(2)  Prime(2) Intro : 2, 5

7. x (Even(x)  Prime(x))   Intro : 7

English version:

“Note that 2 = 2*1 by definition of multiplication.  It follows that there is a y 
such that  2 = 2y;  so, 2 is even.  Furthermore, 2 is an integer, and there are no 
integers between 1 and 2; so, by definition of a prime number, 2 is prime.    
Since 2 is both even and prime,  x (Even(x)  Prime(x)).”

Prime(x): x is an integer > 1 and x is not a multiple of any integer strictly
between 1 and x 

Even(x)  y (x=2y)     

even and odd

Prove: “The square of every even number is even.”

Formal proof of: x (Even(x)  Even(x2))

Even(x)  y  (x=2y)     
Odd(x)  y  (x=2y+1)
Domain: Integers 
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even and odd

Prove: “The square of every even number is even.”

Formal proof of: x (Even(x)  Even(x2))

Even(x)  y  (x=2y)     
Odd(x)  y  (x=2y+1)
Domain: Integers 

1. Even(a) Assumption: a arbitrary integer
2. ∃y (a = 2y) Definition of Even
3. a = 2c By elim  : c special depends on a
4. a2 = 4c2 = 2(2c2)  Algebra
5. ∃y (a2 = 2y) By  intro  rule
6. Even(a2) Definition of Even

7.   Even(a)Even(a2) Direct proof rule
8.   x (Even(x)Even(x2)) By intro  rule

even and odd

Prove: “The square of every odd number is odd”

English proof of: x (Odd(x)Odd(x2))

Even(x)  y  (x=2y)     
Odd(x)  y  (x=2y+1)
Domain: Integers 

Let x be an odd number.
Then x = 2k + 1 for some integer k (depending on x)
Therefore x2 = (2k+1)2 = 4k2 + 4k + 1 = 2(2k2+2k) + 1.
Since 2k2 + 2k is an integer, x2 is odd.                        

counterexamples

To disprove x P(x) find a counterexample:
– some c such that P(c)

– works because this implies x P(x)

which is equivalent to x P(x)

proof by contrapositive:  another strategy for implications

If we assume q and derive p, then we have proven
q p, which is the same as p  q.

1. q         Assumption

...

3. p

4. q p Direct Proof Rule

5. p  q Contrapositive                          

proof by contradiction:  one way to prove p

If we assume p and derive False (a contradiction), then we 
have proved p.

1.  p         assumption

...

3.  F

4.   p  F direct Proof rule

5.   p  F       equivalence from 4

6.   p equivalence from 5

even and odd

Even(x)  y  (x=2y)     
Odd(x)  y  (x=2y+1)
Domain: Integers 

Prove: “No integer is both even and odd.”

English proof of:    x (Even(x)Odd(x)) 

 x (Even(x)Odd(x))

We proceed by contradiction:

Let x be any integer and suppose that it is both even and odd.

Then x=2k for some integer k and x=2m+1 for some integer m.   
Therefore 2k=2m+1 and hence k=m+½.

But two integers cannot differ by ½ so this is a contradiction.

So, no integer is both even an odd.                                                                 



4/8/2015

4

rational numbers

• A real number x is rational iff there exist integers p and q 
with q  0  such that x=p/q.

• Prove:  

– If x and y are rational then xy is rational

– If x and y are rational then x+y is rational

Rational(x)  p q  ((x=p/q)  Integer(p)  Integer(q)  q0)    

rational numbers

Domain: Real numbers

• A real number x is rational iff there exist integers p and q 
with q  0  such that x=p/q.

Rational(x)  p q  ((x=p/q)  Integer(p)  Integer(q)  q0)    

• Prove:   If x and y are rational then xy is rational

x y ((Rational(x)  Rational(y))  Rational(xy))

rational numbers

Domain: Real numbers

• A real number x is rational iff there exist integers p and q 
with q  0  such that x=p/q.

Rational(x)  p q  ((x=p/q)  Integer(p)  Integer(q)  q0)    

You might try to prove:
- If x and y are rational then xy is rational
- If x and y are rational then x+y is rational
- If x and y are rational then x/y is rational

proofs summary

• Formal proofs follow simple well-defined rules and should be 
easy to check

– In the same way that code should be easy to execute

• English proofs correspond to those rules but are designed to 
be easier for humans to read

– Easily checkable in principle

• Simple proof strategies already do a lot

– Later we will cover a specific strategy that applies to loops

and recursion (mathematical induction)


