cse 311: foundations of computing

Spring 2015 Lecture 7: Proofs



proofs

example

Show that $\neg p$ follows from $p \rightarrow r$, $\neg r \lor s$, and $\neg s$.

recall: direct proof of an implication

- $p \Rightarrow q$ denotes a proof of q given p as an assumption
- The direct proof rule:

If you have such a proof then you can conclude that $\mathbf{p} \rightarrow \mathbf{q}$ is true

Examp	

mple:	proof subroutine
1. p	assumption
2. p∨q	intro for \lor from 1
3. $p \rightarrow (p \lor q)$	direct proof rule

proofs using the direct proof rule

Show that $p \rightarrow r$ follows from q and $(p \land q) \rightarrow r$

	q $(p \wedge q) \rightarrow r$	given given
6.	3. p 4. p∧q 5. r p→r	assumption from 1 and 3 via Intro \land rule modus ponens from 2 and 4 direct proof rule

example

Prove: $(p \land q) \rightarrow (p \lor q)$

Prove: $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$

one general proof strategy

- 1. Look at the rules for introducing connectives to see how you would build up the formula you want to prove from pieces of what is given
- 2. Use the rules for eliminating connectives to break down the given formulas so that you get the pieces you need to do (1).
- 3. Write the proof beginning with what you figured out for (2) followed by (1).

P(c) for some c	∀x P(x)
∴∃x P(x)	\therefore P(a) for any a
"Let a be anything*"P(a)	∃x P(x)
∴ ∀x P(x)	∴ P(c) for some <i>special</i> ** c
* in the domain of P	** By special, we mean that c is a name for a value where P(c) is true. We can't use anything else about that value, so c has to be a NEW variable!

inference rules for quantifiers

proofs using quantifiers

"There exists an even prime number."

even and odd

Prove: "The square of every even number is even." Formall proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

Prime(x): x is an integer > 1 and x is not a multiple of any integer strictly between 1 and x

even and odd

Prove: "The square of every odd number is odd" English proof of: $\forall x (Odd(x) \rightarrow Odd(x^2))$ Even(x) = $\exists y (x=2y)$ Odd(x) = $\exists y (x=2y+1)$ Domain: Integers

even and odd

Prove: "The square of every odd number is odd" English proof of: $\forall x (Odd(x) \rightarrow Odd(x^2))$

Let x be an odd number.

Then x = 2k + 1 for some integer k (depending on x) Therefore $x^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2+2k) + 1$. Since $2k^2 + 2k$ is an integer, x^2 is odd.

proof by contradiction: one way to prove $\neg p$

If we assume p and derive False (a contradiction), then we have proved $\neg p.$

assumption
direct Proof rule equivalence from 4 equivalence from 5