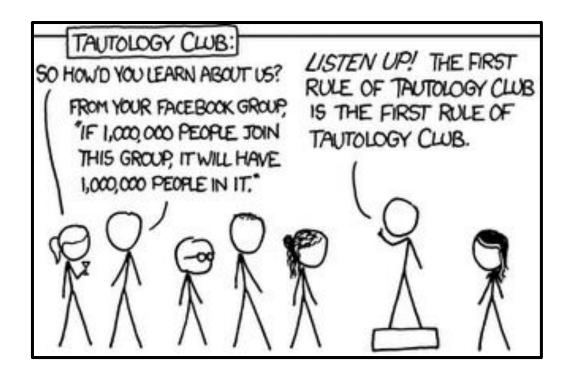
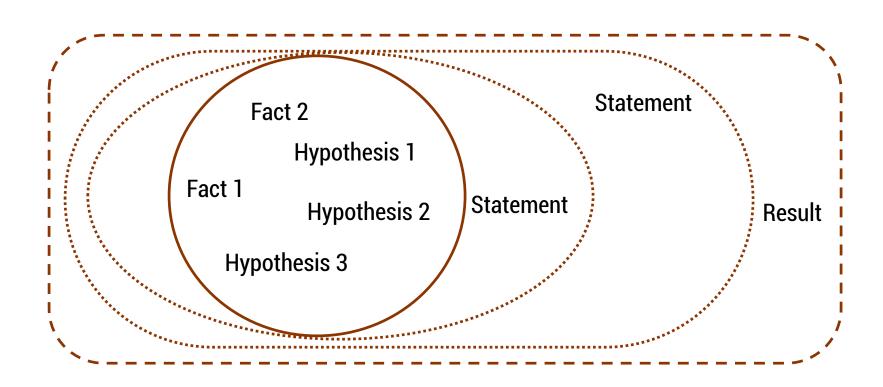
cse 311: foundations of computing

Spring 2015

Lecture 7: Proofs



- Start with hypotheses and facts
- Use rules of inference to extend set of facts
- Result is proved when it is included in the set



an inference rule: *Modus Ponens*

• If p and p \rightarrow q are both true then q must be true

- Given:
 - If it is Monday then you have a 311 class today.
 - It is Monday.
- Therefore, by modus ponens:
 - You have a 311 class today.

Show that r follows from p, p \rightarrow q, and q \rightarrow r

```
    p given
    p → q given
    q → r given
    q modus ponens from 1 and 2 modus ponens from 3 and 4
```

...which means that if both A and B are true then you can infer C and you can infer D.

- For rule to be correct $(A \land B) \rightarrow C$ and $(A \land B) \rightarrow D$ must be a tautologies
- Sometimes rules don't need anything to start with. These rules are called axioms:
 - e.g. Excluded Middle Axiom

proofs can use equivalences too

Show that $\neg p$ follows from $p \rightarrow q$ and $\neg q$

```
    p → q given
    ¬ q given
```

3. ¬q → ¬p contrapositive of 1
4. ¬p modus ponens from 2 and 3

important: applications of inference rules

- You can use equivalences to make substitutions of any sub-formula.
- Inference rules only can be applied to whole formulas (not correct otherwise)

e.g. 1.
$$p \rightarrow q$$
 given
2. $(p \lor r) \rightarrow q$ intro \lor from 1.

Does not follow! e.g. p=F, q=F, r=T

simple propositional inference rules

Excluded middle plus two inference rules per binary connective, one to eliminate it and one to introduce it:

direct proof of an implication

- $p \Rightarrow q$ denotes a proof of q given p as an assumption
- The direct proof rule:

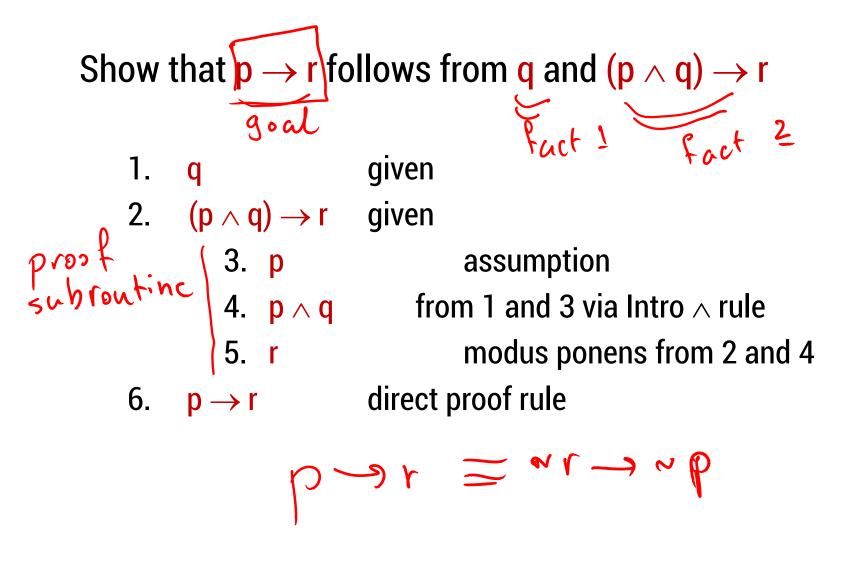
If you have such a proof then you can conclude that $p \rightarrow q$ is true

Example:

proof subroutine

1. p assumption
2.
$$p \lor q$$
 intro for \lor from 1
3. $p \to (p \lor q)$ direct proof rule

proofs using the direct proof rule



Prove:
$$(p \land q) \rightarrow (p \lor q)$$

Prove:
$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$
 conclusion

Assumption

1. $(p \rightarrow q) \land (q \rightarrow r)$ Assum

2. $p \rightarrow q$ elim \land in \land

3. $q \rightarrow r$ elim \land in \land

4. \land Assumption

5. \land Modus ponen \land and \land

7. \land Por direct proof

8. $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$.

one general proof strategy

- 1. Look at the rules for introducing connectives to see how you would build up the formula you want to prove from pieces of what is given
- 2. Use the rules for eliminating connectives to break down the given formulas so that you get the pieces you need to do (1).
- Write the proof beginning with what you figured out for (2) followed by (1).

inference rules for quantifiers

P(c) for some c

 $\forall x P(x)$

 $\therefore \exists x P(x)$

 \therefore P(a) for any a

"Let a be anything*"...P(a)

 $\exists x P(x)$

 $\therefore \forall x P(x)$

 \therefore P(c) for some *special*** c

* in the domain of P

** By special, we mean that c is a name for a value where P(c) is true. We can't use anything else about that value, so c has to be a NEW variable!

proofs using quantifiers

"There exists an even prime number."

Prime(x): x is an integer > 1 and x is not a multiple of any integer strictly between 1 and x

even and odd

Prove: "The square of every even number is even."

Formal proof of: $\forall x \text{ (Even(x)} \rightarrow \text{Even(x^2))}$

```
Even(x) \equiv \exists y \ (x=2y)
Odd(x) \equiv \exists y \ (x=2y+1)
Domain: Integers
```

even and odd

Prove: "The square of every odd number is odd"

English proof of: $\forall x (Odd(x) \rightarrow Odd(x^2))$

```
Even(x) \equiv \exists y \ (x=2y)
Odd(x) \equiv \exists y \ (x=2y+1)
Domain: Integers
```

even and odd

Prove: "The square of every odd number is odd"

English proof of: $\forall x (Odd(x) \rightarrow Odd(x^2))$

Let x be an odd number.

```
Then x = 2k + 1 for some integer k (depending on x)
Therefore x^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2+2k) + 1.
Since 2k^2 + 2k is an integer, x^2 is odd.
```

```
Even(x) \equiv \exists y \ (x=2y)
Odd(x) \equiv \exists y \ (x=2y+1)
Domain: Integers
```

proof by contradiction: one way to prove ¬p

If we assume p and derive False (a contradiction), then we have proved $\neg p$.

• • •

3. **F**

4. $p \rightarrow F$

5. $\neg p \lor F$

6. **¬p**

direct Proof rule

equivalence from 4

equivalence from 5