quantifiers

Vx P(x)
P(x) is true for every x in the domain
read as “for all x, P of x"

Ix P(x)
There is an x in the domain for which P(x) is true
read as “there exists x, P of x"

negations of quantifiers

(\
M every positive integer is prime nes (‘44\‘01/\

some positive integer Is not prime
prime numbers do not exist

“/_Mv\(REA \7v W A
every positive integer is not prime

\ | (

negations of quantifiers

* VX PurpleFruit(x) Domain:
« “All fruits are purple” Fruit

- What is —Vx PurpleFruit(x)

PurpleFruit(x)

 “Not all fruits are purple”

« How about 3x PurpleFruit(x)?

« “There is a purple fruit"

- If it's the negation, all situations should be covered by a statement and its
negation.

« Consider the domain {Orange}: Neither statement is true!
* No.

« How about 3x —PurpleFruit(x)?
« “There is a fruit that isn't purple”
* Yes.

de Morgan’s laws for quantifiers

—Vx P(x) = dx—=P(x)
—dx P(x) = Vx —P(x)

D’ ‘{XUYL,.-,, 3

Ak POO = P A POG) A -
Dafx PA) = 2 (REIAREIN)
_ /7?[\4') vV '\\)/\(1)\/* ‘

e
a—

= 5‘34’7?/&>
5) y P&) =Py Y)Y -

de Morgan’s laws for quantifiers

—Vx P(x) = dx—=P(x)
—dx P(x) = Vx —P(x)

. . |—orwin =
“There 1s no largest integer.” ey ek S
—3Ix Vy (xzy)
= Vx=Vy (xz2y)
= Vx 3Jy—=(xz2y)
= Vx 3y (y>Xx)

“For every integer there Is a larger integer.”

scope of quantifiers

3y Greater (y, x)
3 z Greater (z, x)

truth value; l S()

doesn't depend on y or z “bound variables”
does depend on x “free variable"

example: Notlargest(x)

|

quantifiers only act on free variables of the formula thH
', N

quantify Lt O V |
nwcon -§ A)) j(@
Y) X (% y (P(x,y) = VD'X Q(y, x))) ﬁfj\: S »)
o b {RSET

(thwin &

scope of quantifiers

3Ix (P(x) AQ(x)) vs. (Hx P(X))/\GX 0(x)>
Yo s M 3x PR a3 QL)
=" x < 5
@{x\; X > S

Y

)

P/x) - 'xz 3

cse 311: foundations of computing

Spring 2015
Lecture 6: Predicate Logic, Logical Inference

YOUVE SHOWN THE INCONSISTENCY= | prap DR, KNUTH, | T AM WRITING T0 (oLLECT
AND THUS INVALIDITY — OF BASIC FROM YOU THE $3,372,56M.48
LOGIC ITSELF. T AM OWED FOR DISCOVERING
1,317,408 ERRORS IN 7 AT
O QYIS FROGRAYDING...

%)

nested quantifiers

* Bound variable names don't matter
Vx3yP(x,y)=Va3ibP(ab)

« Positions of quantifiers can sometimes change
VXx(QX) ATYyP(x,y) =V x3y(QKX) AP(XY))

« But: orderis important...

predicate with two variables

quantification with two variables

expression when true when false

VXV yP(x,y)

Ix3yP(x,y)

vV x3yP(x,y)

IxVyP(xy)

Vx Vy P(x,y)

dx 3y P(x,y)

vx 3y P(x,y)

4
L —————
ﬁ—’-— -
— 7]
1=
—

dx Vy P(x,y)

— y ---
r -
:t,/ —_—
l/
I _
T“T)/T‘TV~~—/‘T\
-

quantification with two variables

A

expression whentrue /D |when faIse’T

VXV y P(x,y) /
Ix3yP(x,y) / /
vV x3yP(xy) (luott WAW >

IxVyP(xy)

logal inference

e So far we've considered:

— How to understand and express things using
oropositional and predicate logic

— How to compute using Boolean (propositional) logic

— How to show that different ways of expressing or
computing them are equivalentto each other

* Logic also has methods that let us /nferimplied
properties from ones that we know

— Equivalence is only a small part of this

applications of logical inference

Software Engineering
— Express desired properties of program as set of logical constraints

— Use inference rules to show that program implies that those
constraints are satisfied

Artificial Intelligence
— Automated reasoning

Algorithm design and analysis
— e.g., Correctness, Loop invariants.

MAKING HER DEBUT AS FOX NEWS ANALYST

[SARAHPAUN o)

: : foundations of rational thought...
Logic Programming, e.g. Prolog

— Express desired outcome as set of constraints
— Automatically apply logic inference to derive solution

proofs

« Start with hypotheses and facts
 Use rules of inference to extend set of facts
 Result is proved when it 1s included in the set

an inference rule: Modus Ponens

If p and p — q are both true then g must be true

Write this rule as P,P—>Qq
. q
Given:

— If it s Monday then you have a 311 class today.
— It 1s Monday.

Therefore, by modus ponens:
— You have a 311 class today.

proofs

Show that r follows fromp,p — g,and q —r

P given
p—(q given
q—>r given
q modus ponens from 1 and 2
r modus ponens from 3 and 4

Ok

proofs can use equivalences too

Show that —p follows from p — q and —q

1. P —(Q given

2. —qQ given

3. —gq—>-—p contrapositive of 1

4. —p modus ponens from 2 and 3

inference rules

A, B
~C,D

e Each inference rule is written as:

...which means that if both A and B
are true then you can infer C and
you can infer D.

— For rule to be correct (A AB) — C and
(A A B) - D must be a tautologies

« Sometimes rules don't need anything to start with. These
rules are called axioms:

— e.q. Excluded Middle Axiom

simple propositional inference rules

Excluded middle plus two inference rules per binary connective, one to
eliminate it and one to introduce It:

PA(Q P, g

- P, g P AQ
pVvg,—p P

e ~pvqg,qvp

P.P—¢
.

Direct Proof Rule
Not like other rules

important: applications of inference rules

 You can use equivalences to make substitutions
of any sub-formula.

* Inference rules only can be applied to whole formulas
(not correct otherwise)

e.q. tp—q given ~

—

2HpvTI—q intro v from—-

Does not follow! e.g. p=F, q=F, r=T

direct proof of an implication

* p = q denotes a proof of q given p as an assumption

 The direct proof rule:
If you have such a proof then you can conclude
that p — q s true

Example: proof subroutine
1. p assumption
2. pvqQ intro for v from 1

3. p—>(pvq) direct proof rule

