
quantifiers

∀𝑥 𝑃(𝑥)

P(x) is true for every x in the domain

read as “for all x, P of x”

∃𝑥 𝑃 𝑥

There is an x in the domain for which P(x) is true

read as “there exists x, P of x”

negations of quantifiers

• not every positive integer is prime

• some positive integer is not prime

• prime numbers do not exist

• every positive integer is not prime

negations of quantifiers

• x PurpleFruit(x)
• “All fruits are purple”
• What is x PurpleFruit(x)
• “Not all fruits are purple”

• How about x PurpleFruit(x)?
• “There is a purple fruit”
• If it’s the negation, all situations should be covered by a statement and its

negation.

• Consider the domain {Orange}: Neither statement is true!
• No.

• How about x PurpleFruit(x)?
• “There is a fruit that isn’t purple”
• Yes.

Domain:
Fruit

PurpleFruit(x)

de Morgan’s laws for quantifiers

x P(x)  x P(x)
x P(x)  x P(x)

de Morgan’s laws for quantifiers

  x  y (x ≥ y)
  x  y (x ≥ y)
  x  y  (x ≥ y)
  x  y (y > x)

“There is no largest integer.”

“For every integer there is a larger integer.”

x P(x)  x P(x)
x P(x)  x P(x)

scope of quantifiers

example: Notlargest(x)   y Greater (y, x)
  z Greater (z, x)

truth value:

doesn’t depend on y or z “bound variables”

does depend on x “free variable”

quantifiers only act on free variables of the formula they
quantify

 x ( y (P(x, y)  x Q(y, x)))

scope of quantifiers

x (P(x)  Q(x)) vs. x P(x)  x Q(x)

cse 311: foundations of computing

Spring 2015
Lecture 6: Predicate Logic, Logical Inference

nested quantifiers

• Bound variable names don’t matter

 x  y P(x, y)   a  b P(a, b)

• Positions of quantifiers can sometimes change

 x (Q(x)   y P(x, y))   x  y (Q(x)  P(x, y))

• But: order is important...

predicate with two variables

P(x, y)x

y

quantification with two variables

expression when true when false

x  y P(x, y)

 x  y P(x, y)

 x  y P(x, y)

 x  y P(x, y)

∀𝑥 ∀𝑦 𝑃(𝑥, 𝑦)

x

y

∃𝑥 ∃𝑦 𝑃(𝑥, 𝑦)

x

y

∀𝑥 ∃𝑦 𝑃(𝑥, 𝑦)

x

y

∃𝑥 ∀𝑦 𝑃(𝑥, 𝑦)

x

y

quantification with two variables

expression when true when false

x  y P(x, y)

 x  y P(x, y)

 x  y P(x, y)

 x  y P(x, y)

logal inference

• So far we’ve considered:
– How to understand and express things using

propositional and predicate logic

– How to compute using Boolean (propositional) logic

– How to show that different ways of expressing or
computing them are equivalent to each other

• Logic also has methods that let us infer implied
properties from ones that we know
– Equivalence is only a small part of this

applications of logical inference

• Software Engineering

– Express desired properties of program as set of logical constraints

– Use inference rules to show that program implies that those
constraints are satisfied

• Artificial Intelligence

– Automated reasoning

• Algorithm design and analysis

– e.g., Correctness, Loop invariants.

• Logic Programming, e.g. Prolog

– Express desired outcome as set of constraints

– Automatically apply logic inference to derive solution

foundations of rational thought…

proofs

• Start with hypotheses and facts

• Use rules of inference to extend set of facts

• Result is proved when it is included in the set

an inference rule: Modus Ponens

• If p and p  q are both true then q must be true

• Write this rule as

• Given:

– If it is Monday then you have a 311 class today.

– It is Monday.

• Therefore, by modus ponens:

– You have a 311 class today.

p, p  q
∴ q

proofs

Show that r follows from p, p  q, and q  r

1. p given
2. p  q given
3. q r given
4. q modus ponens from 1 and 2
5. r modus ponens from 3 and 4

proofs can use equivalences too

Show that p follows from p  q and q

1. p  q given
2.  q given
3.  q p contrapositive of 1
4.  p modus ponens from 2 and 3

inference rules

• Each inference rule is written as:

...which means that if both A and B

are true then you can infer C and

you can infer D.
– For rule to be correct (A  B)  C and

(A  B)  D must be a tautologies

• Sometimes rules don’t need anything to start with. These
rules are called axioms:
– e.g. Excluded Middle Axiom

A, B
∴ C,D

∴ p p

simple propositional inference rules

Excluded middle plus two inference rules per binary connective, one to
eliminate it and one to introduce it:

p  q
∴ p, q

p, q
∴ p  q

p x
∴ p  q, q  p

p  q , p
∴ q

p, p  q
∴ q

p  q
∴ p  q

Direct Proof Rule
Not like other rules

important: applications of inference rules

• You can use equivalences to make substitutions

of any sub-formula.

• Inference rules only can be applied to whole formulas

(not correct otherwise)

e.g. 1. p  q given

2. (p  r)  q intro  from 1.

Does not follow! e.g . p=F, q=F, r=T

direct proof of an implication

• p  q denotes a proof of q given p as an assumption

• The direct proof rule:

If you have such a proof then you can conclude

that p  q is true

Example:

1. p assumption
2. p  q intro for  from 1

3. p  (p  q) direct proof rule

proof subroutine

