quantifiers

```
\forall x \ P(x)
P(x) is true for every x in the domain read as "for all x, P of x"
```

$$\exists x P(x)$$

There is an x in the domain for which P(x) is true read as "there exists x, P of x"

negations of quantifiers

• not every positive integer is prime negation

some positive integer is not prime

Energ P.i. is prime.

prime numbers do not exist

There is a prime H.

every positive integer is not prime

negations of quantifiers

- ∀x PurpleFruit(x)
 - "All fruits are purple"
 - What is $\neg \forall x \text{ PurpleFruit}(x)$
 - "Not all fruits are purple"

Domain: Fruit

PurpleFruit(x)

- How about ∃x PurpleFruit(x)?
 - "There is a purple fruit"
 - If it's the negation, all situations should be covered by a statement and its negation.
 - Consider the domain {Orange}: Neither statement is true!
 - No.
- How about ∃x ¬PurpleFruit(x)?
 - "There is a fruit that isn't purple"
 - Yes.

de Morgan's laws for quantifiers

$$\neg \forall x \ P(x) \equiv \exists x \neg P(x) \neg \exists x \ P(x) \equiv \forall x \neg P(x)$$

$$D = \{X_1, X_2, \dots\}$$

$$\forall x P(x) \equiv P(x_1) \wedge P(x_2) \wedge \dots$$

$$\forall x P(x) \equiv 7 (P(x_1) \wedge P(x_2) \wedge \dots)$$

$$\equiv 7P(X_1) \vee 7P(X_2) \vee \dots$$

$$\equiv 7 \times 7P(x)$$

$$\equiv 7 \times 7P(x)$$

$$\exists x P(x) \equiv P(X_1) \vee P(X_2) \vee \dots$$

de Morgan's laws for quantifiers

"There is no largest integer."

"For every integer there is a larger integer."

scope of quantifiers

example: Notlargest(x)
$$\equiv \exists y \text{ Greater } (y, x)$$

 $\equiv \exists z \text{ Greater } (z, x)$

truth value:

doesn't depend on y or z "bound variables" does depend on x "free variable"

quantifiers only act on free variables of the formula they

quantify

$$\forall x (\exists y (P(x, y) \rightarrow \forall x Q(y, x)))$$

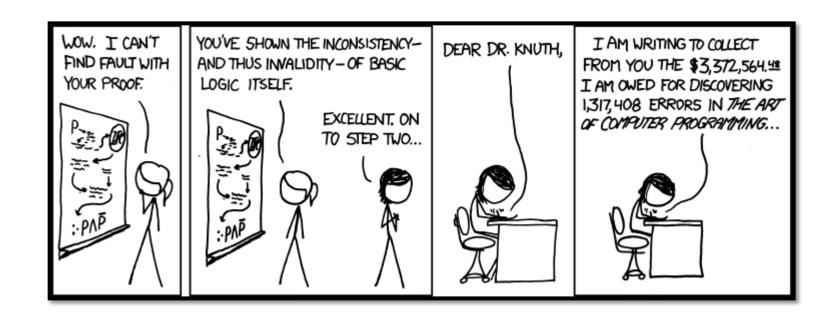
function S(D) let B=A+3+2;

scope of quantifiers

cse 311: foundations of computing

Spring 2015

Lecture 6: Predicate Logic, Logical Inference



Bound variable names don't matter

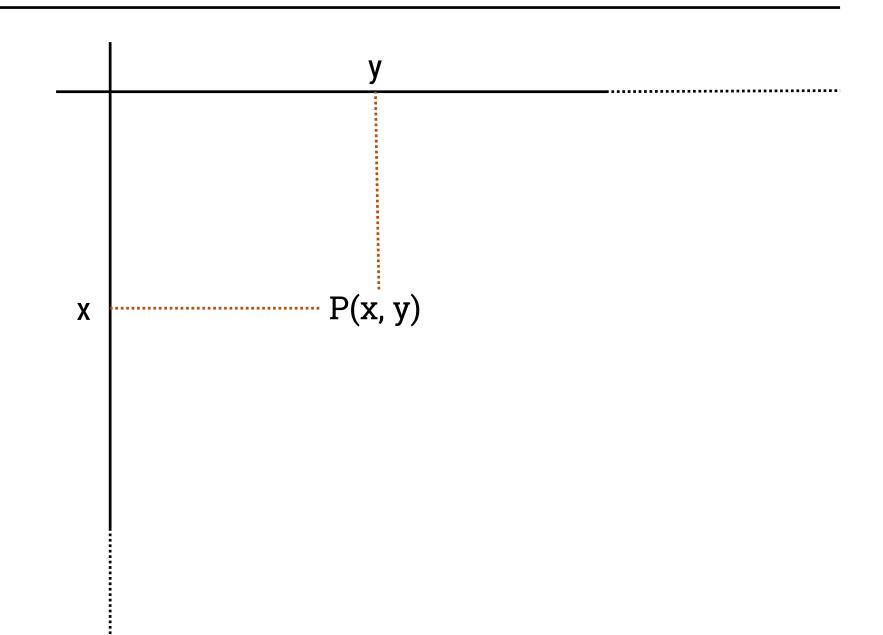
$$\forall x \exists y P(x, y) \equiv \forall a \exists b P(a, b)$$

Positions of quantifiers can sometimes change

$$\forall x (Q(x) \land \exists y P(x, y)) \equiv \forall x \exists y (Q(x) \land P(x, y))$$

But: order is important...

predicate with two variables



quantification with two variables

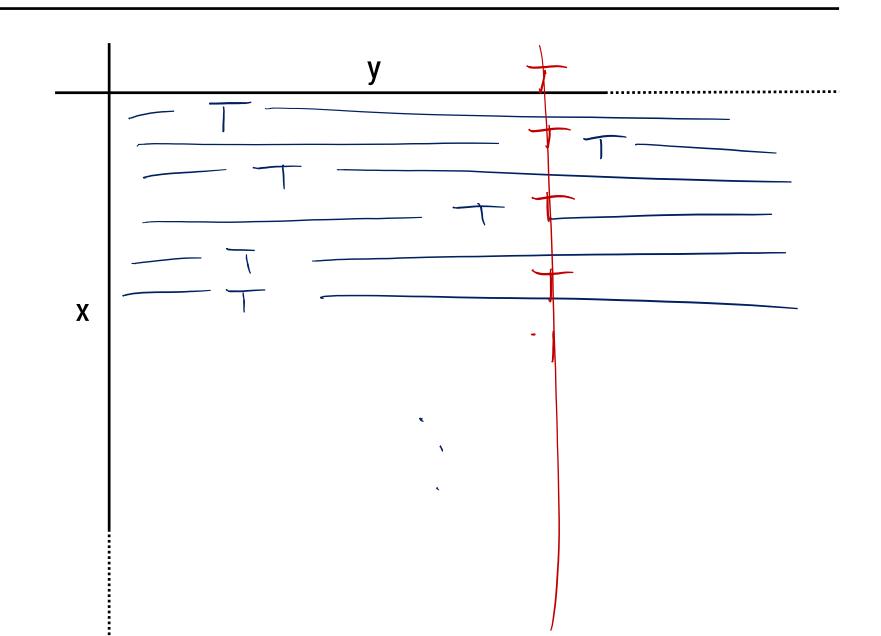
expression	when true	when false
$\forall x \forall y P(x, y)$		
∃ x ∃ y P(x, y)		
∀ x ∃ y P(x, y)		
∃ x ∀ y P(x, y)		

		у	
	7		
X			F
	`		

 $\exists x \; \exists y \; P(x,y)$

	у	
X		T T

 $\forall x \exists y P(x,y)$



у	
Y F F T T T F	
	(-
	F F TTTT

quantification with two variables

expression	when true	when false
$\forall x \forall y P(x, y)$		
∃ x ∃ y P(x, y)		
∀ x ∃ y P(x, y)	(look	Letino)
∃ x ∀ y P(x, y)		

logal inference

- So far we've considered:
 - How to understand and express things using propositional and predicate logic
 - How to compute using Boolean (propositional) logic
 - How to show that different ways of expressing or computing them are *equivalent* to each other
- Logic also has methods that let us *infer* implied properties from ones that we know
 - Equivalence is only a small part of this

applications of logical inference

Software Engineering

- Express desired properties of program as set of logical constraints
- Use inference rules to show that program implies that those constraints are satisfied
- Artificial Intelligence
 - Automated reasoning
- Algorithm design and analysis
 - e.g., Correctness, Loop invariants.

foundations of rational thought...

- Logic Programming, e.g. Prolog
 - Express desired outcome as set of constraints
 - Automatically apply logic inference to derive solution

- Start with hypotheses and facts
- Use rules of inference to extend set of facts
- Result is proved when it is included in the set

an inference rule: Modus Ponens

• If p and p \rightarrow q are both true then q must be true

- Given:
 - If it is Monday then you have a 311 class today.
 - It is Monday.
- Therefore, by modus ponens:
 - You have a 311 class today.

Show that r follows from p, p \rightarrow q, and q \rightarrow r

```
    p given
    p → q given
    q → r given
    q modus ponens from 1 and 2 modus ponens from 3 and 4
```

proofs can use equivalences too

Show that $\neg p$ follows from $p \rightarrow q$ and $\neg q$

```
1. \mathbf{p} \rightarrow \mathbf{q} given
```

- 2.
 → q given
- 3. $\neg q \rightarrow \neg p$ contrapositive of 1
- 4. $\neg p$ modus ponens from 2 and 3

inference rules

...which means that if both A and B are true then you can infer C and you can infer D.

- For rule to be correct $(A \land B) \rightarrow C$ and $(A \land B) \rightarrow D$ must be a tautologies
- Sometimes rules don't need anything to start with. These rules are called axioms:
 - e.g. Excluded Middle Axiom

simple propositional inference rules

Excluded middle plus two inference rules per binary connective, one to eliminate it and one to introduce it:

important: applications of inference rules

- You can use equivalences to make substitutions of any sub-formula.
- Inference rules only can be applied to whole formulas (not correct otherwise)

e.g. 1.
$$p \rightarrow q$$
 given
2. $(p \lor r) \rightarrow q$ intro \lor from 1.

Does not follow! e.g. p=F, q=F, r=T

direct proof of an implication

- $p \Rightarrow q$ denotes a proof of q given p as an assumption
- The direct proof rule:

If you have such a proof then you can conclude that $p \rightarrow q$ is true

Example:

proof subroutine

1. p assumption
2.
$$p \lor q$$
 intro for \lor from 1
3. $p \to (p \lor q)$ direct proof rule