
4/7/2015

1

adding numbers in binary

317 + 422 = 100111101 2 + 110100110 2

100111101
110100110

0

1100011101

01111001

A A A A A

B B B B B

S S S S S

CinCout

1-bit binary adder

• Inputs: A, B, Carry-in

• Outputs: Sum, Carry-out

A

B

Cin
Cout

S

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

A B Cin Cout S

A A A A A

B B B B B

S S S S S

CinCout

1-bit binary adder

• Inputs: A, B, Carry-in

• Outputs: Sum, Carry-out

A

B

Cin
Cout

S

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

A B Cin Cout S

0
1
1
0
1
0
0
1

0
0
0
1
0
1
1
1

Cout = A’ B Cin + A B’ Cin + A B Cin’ + A B Cin

S = A’ B’ Cin + A’ B Cin’ + A B’ Cin’ + A B Cin

A A A A A

B B B B B

S S S S S

CinCout

apply theorems to simplify expressions

The theorems of Boolean algebra can simplify expressions

– e.g., full adder’s carry-out function

Cout = A’ B Cin + A B’ Cin + A B Cin’ + A B Cin
= A’ B Cin + A B’ Cin + A B Cin’ + A B Cin + A B Cin
= A’ B Cin + A B Cin + A B’ Cin + A B Cin’ + A B Cin
= (A’ + A) B Cin + A B’ Cin + A B Cin’ + A B Cin
= (1) B Cin + A B’ Cin + A B Cin’ + A B Cin
= B Cin + A B’ Cin + A B Cin’ + A B Cin + A B Cin
= B Cin + A B’ Cin + A B Cin + A B Cin’ + A B Cin
= B Cin + A (B’ + B) Cin + A B Cin’ + A B Cin
= B Cin + A (1) Cin + A B Cin’ + A B Cin
= B Cin + A Cin + A B (Cin’ + Cin)
= B Cin + A Cin + A B (1)
= B Cin + A Cin + A B adding extra terms

creates new factoring
opportunities

cse 311: foundations of computing

Spring 2015
Lecture 5: Canonical forms and predicate logic

a 2-bit ripple-carry adder

A

Sum

CoutCin

B

1-Bit Adder

A

B

Cin
Sum

A

B

A

Cin

B

Cin

Cout

A0 B0

CoutCin

Sum0

0

A1 B1

Sum1

CoutCin

A2 B2

Sum2

CoutCin

4/7/2015

2

mapping truth tables to logic gates

Given a truth table:

1. Write the Boolean expression

2. Minimize the Boolean expression

3. Draw as gates

4. Map to available gates

A B C F

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1F = A’BC’+A’BC+AB’C+ABC

= A’B(C’+C)+AC(B’+B)

= A’B+AC

notA

B

A

C

F F

notA

B

A

C

1

2

3

4

canonical forms

• Truth table is the unique signature of a Boolean function

• The same truth table can have many gate realizations
– we’ve seen this already
– depends on how good we are at Boolean simplification

• Canonical forms
– standard forms for a Boolean expression
– we all come up with the same expression

sum-of-products canonical form

• also known as Disjunctive Normal Form (DNF)

• also known as minterm expansion

A B C F F’
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

F =

F = 001 011 101 110 111

+ A’BC + AB’C + ABC’ + ABCA’B’C

sum-of-products canonical form

Product term (or minterm)

– ANDed product of literals – input combination for which output is true

– each variable appears exactly once, true or inverted (but not both)

A B C minterms

0 0 0 A’B’C’

0 0 1 A’B’C

0 1 0 A’BC’

0 1 1 A’BC

1 0 0 AB’C’

1 0 1 AB’C

1 1 0 ABC’

1 1 1 ABC

F in canonical form:

F(A, B, C) = A’B’C + A’BC + AB’C + ABC’ + ABC

canonical form  minimal form

F(A, B, C) = A’B’C + A’BC + AB’C + ABC + ABC’

= (A’B’ + A’B + AB’ + AB)C + ABC’

= ((A’ + A)(B’ + B))C + ABC’

= C + ABC’

= ABC’ + C

= AB + C

product-of-sums canonical form

• Also known as Conjunctive Normal Form (CNF)

• Also known as maxterm expansion

A B C F F’
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

F = 000 010 100

F = (A + B + C) (A + B’ + C) (A’ + B + C)

s-o-p, p-o-s, and de Morgan’s theorem

Complement of function in sum-of-products form:

– F’ = A’B’C’ + A’BC’ + AB’C’

Complement again and apply de Morgan’s and
get the product-of-sums form:

– (F’)’ = (A’B’C’ + A’BC’ + AB’C’)’

– F = (A + B + C) (A + B’ + C) (A’ + B + C)

4/7/2015

3

product-of-sums canonical form

Sum term (or maxterm)

– ORed sum of literals – input combination for which output is false

– each variable appears exactly once, true or inverted (but not both)

A B C maxterms

0 0 0 A+B+C

0 0 1 A+B+C’

0 1 0 A+B’+C

0 1 1 A+B’+C’

1 0 0 A’+B+C

1 0 1 A’+B+C’

1 1 0 A’+B’+C

1 1 1 A’+B’+C’

F in canonical form:

F(A, B, C) = (A + B + C) (A + B’ + C) (A’ + B + C)

canonical form  minimal form

F(A, B, C) = (A + B + C) (A + B’ + C) (A’ + B + C)

= (A + B + C) (A + B’ + C)

(A + B + C) (A’ + B + C)

= (A + C) (B + C)

predicate logic

• Propositional Logic
– If Pikachu doesn’t wear pants, then he flies on Bieber’s jet unless Taylor is

feeling lonely.

• Predicate Logic
– If 𝑥, 𝑦, and 𝑧 are positive integers, then 𝑥3 + 𝑦3 ≠ 𝑧3.

Predicate or Propositional Function

– A function that returns a truth value, e.g.,

“x is a cat”

“x is prime”

“student x has taken course y”

“x > y”

“x + y = z” or Sum(x, y, z)

“5 < x”

Predicates will have variables or constants as arguments.

predicate logic domain of discourse

We must specify a “domain of discourse”, which is the possible
things we’re talking about.

“x is a cat”
(e.g., mammals)

“x is prime”
(e.g., positive whole numbers)

student x has taken course y”
(e.g., students and courses)

quantifiers

∀𝑥 𝑃(𝑥)

P(x) is true for every x in the domain

read as “for all x, P of x”

∃𝑥 𝑃 𝑥

There is an x in the domain for which P(x) is true

read as “there exists x, P of x”

statements with quantifiers

• x Even(x)

• x Odd(x)

• x (Even(x)  Odd(x))

• x (Even(x)  Odd(x))

• x Greater(x+1, x)

• x (Even(x)  Prime(x))

Even(x)
Odd(x)
Prime(x)
Greater(x,y)

(or “x>y”)
Equal(x,y)

(or “x=y”)
Sum(x,y,z)

Domain:
Positive Integers

4/7/2015

4

statements with quantifiers

• x y Greater (y, x)

• x y Greater (x, y)

• x y (Greater(y, x)  Prime(y))

• x (Prime(x)  (Equal(x, 2)  Odd(x))

• x y (Sum(x, 2, y)  Prime(x)  Prime(y))

Even(x)
Odd(x)
Prime(x)
Greater(x,y)

(or “x>y”)
Equal(x,y)

(or “x=y”)
Sum(x,y,z)

Domain:
Positive Integers

statements with quantifiers

• x y Greater (y, x) T

• x y Greater (x, y) F

Even(x)
Odd(x)
Prime(x)
Greater(x,y)

(or “x>y”)
Equal(x,y)

(or “x=y”)
Sum(x,y,z)

Domain:
All integers

Domain of quantifiers is important!

Cat(x)
Red(x)
LikesTofu(x)

English to predicate logic

• “Red cats like tofu”

• “Some red cats don’t like tofu”

negations of quantifiers

• not every positive integer is prime

• some positive integer is not prime

• prime numbers do not exist

• every positive integer is not prime

negations of quantifiers

• x PurpleFruit(x)
• “All fruits are purple”

• What is x PurpleFruit(x)
• “Not all fruits are purple”

• How about x PurpleFruit(x)?
• “There is a purple fruit”
• If it’s the negation, all situations should be covered by a statement and its negation.

• Consider the domain {Orange}: Neither statement is true!
• No.

• How about x PurpleFruit(x)?
• “There is a fruit that isn’t purple”
• Yes.

Domain:
Fruit

PurpleFruit(x)

de Morgan’s laws for quantifiers

x P(x)  x P(x)
x P(x)  x P(x)

4/7/2015

5

de Morgan’s laws for quantifiers

  x  y (x ≥ y)
  x y (x ≥ y)
  x  y  (x ≥ y)
  x  y (y > x)

“There is no largest integer.”

“For every integer there is a larger integer.”

x P(x)  x P(x)
x P(x)  x P(x)

scope of quantifiers

example: Notlargest(x)   y Greater (y, x)

  z Greater (z, x)

truth value:

doesn’t depend on y or z “bound variables”

does depend on x “free variable”

quantifiers only act on free variables of the formula they quantify

 x ( y (P(x, y)  x Q(y, x)))

scope of quantifiers

x (P(x)  Q(x)) vs. x P(x)  x Q(x)

