1-bit binary adder

A A B B

•

 $\begin{array}{c}
 0 \\
 0 \\
 0 \\
 1 \\
 1 \\
 1 \\
 1
 \end{array}$

adding numbers in binary

 $317 + 422 = (100111101)_2 + (110100110)_2$

The theorems of Boolean algebra can simplify expressions - e.g., full adder's carry-out function

cse 311: foundations of computing

a 2-bit ripple-carry adder

mapping truth tables to logic gates

canonical forms

- · Truth table is the unique signature of a Boolean function
- The same truth table can have many gate realizations – we've seen this already
 - depends on how good we are at Boolean simplification

Canonical forms

- standard forms for a Boolean expression
- we all come up with the same expression

sum-of-products canonical form

- also known as Disjunctive Normal Form (DNF)
- · also known as minterm expansion

sum-of-products canonical form

Product term (or minterm)

- ANDed product of literals input combination for which output is true
- each variable appears exactly once, true or inverted (but not both)

А	В	С	minterms		
0	0	0	A'B'C'	F in canonical form:	
0	0	1	A'B'C	F(A, B, C) = ABC + ABC + ABC + ABC + ABC	
0	1	0	A'BC'		
0	1	1	A'BC	canonical form \neq minimal form	
1	0	0	AB'C'	F(A, B, C) = ABC + ABC + ABC + ABC + ABC	
1	0	1	AB'C	= (AB + AB + AB + AB)C + ABC	
1	1	0	ABC'	= ((A' + A)(B' + B))C + ABC'	
1	1	1	ABC	= C + ABC'	
				= ABC' + C	
				= AB + C	

product-of-sums canonical form

- Also known as Conjunctive Normal Form (CNF)
- Also known as maxterm expansion

s-o-p, p-o-s, and de Morgan's theorem

Complement of function in sum-of-products form: - F' = A'B'C' + A'BC' + AB'C'

Complement again and apply de Morgan's and get the product-of-sums form:

- (F')' = (A'B'C' + A'BC' + AB'C')'
- -F = (A + B + C) (A + B' + C) (A' + B + C)

product-of-sums canonical form

Sum term (or maxterm)

ORed sum of literals – input combination for which output is false
 each variable appears exactly once, true or inverted (but not both)

А	В	С	maxterms	E in canonical form:
0	0	0	A+B+C	F(A, B, C) = (A + B + C) (A + B' + C) (A' + B + C)
0	0	1	A+B+C'	
0	1	0	A+B'+C	canonical form ≠ minimal form
0	1	1	A+B'+C'	F(A, B, C) = (A + B + C) (A + B' + C) (A' + B + C)
1	0	0	A'+B+C	= (A + B + C) (A + B' + C)
1	0	1	A'+B+C'	(A + B + C) (A' + B + C)
1	1	0	A'+B'+C	= (A + C) (B + C)
1	1	1	A'+B'+C'	(((()) () () ()

- Propositional Logic

 If Pikachu doesn't wear pants, then he flies on Bieber's jet unless Taylor is feeling lonely.
- Predicate Logic

- If x, y, and z are positive integers, then $x^3 + y^3 \neq z^3$.

predicate logic

predicate logic

Predicate or Propositional Function

- A function that returns a truth value, e.g.,

"x is a cat" "x is prime" "student x has taken course y" "x > y" "x + y = z" or Sum(x, y, z) "5 < x"

Predicates will have variables or constants as arguments.

domain of discourse

We must specify a "domain of discourse", which is the possible things we're talking about.

"x is a cat" (e.g., mammals)

"x is prime" (e.g., positive whole numbers)

student x has taken course y" (e.g., students and courses)

quantifiers

 $\forall x P(x)$

P(x) is true for every x in the domain read as "for all x, P of x"

$\exists x \, P(x)$

There is an x in the domain for which P(x) is true read as "there exists x, P of x"

∃x Even(x)

- ∀x Odd(x)
- ∀x (Even(x) ∨ Odd(x))
- ∃x (Even(x) ∧ Odd(x))
- ∀x Greater(x+1, x)
- $\exists x (Even(x) \land Prime(x))$

statements with quantifiers

Domain:

statements with quantifiers

Domain:

Positive Integers

Greater(x,y) (or "x>y") Equal(x,y) (or "x=y") Sum(x,y,z)

Even(x) Odd(x) Prime(x)

- ∀x ∃y Greater (y, x)
- ∀x ∃y Greater (x, y)
- $\forall x \exists y (Greater(y, x) \land Prime(y))$
- $\forall x (Prime(x) \rightarrow (Equal(x, 2) \lor Odd(x))$
- $\exists x \exists y (Sum(x, 2, y) \land Prime(x) \land Prime(y))$

statements with quantifiers

- ∀x ∃y Greater (y, x)
- ∀x ∃y Greater (x, y) F
- Domain: All integers Even(x) Odd(x) Prime(x) Prime(x) Greater(x,y) (or "x>y") Equal(x,y) (or "x=y") Sum(x,y,z)

Domain of quantifiers is important!

Т

English to predicate logic		negations of quantifiers	
• "Red cats like tofu"	Cat(x) Red(x) LikesTofu(x)	not every positive integer is prime	
		some positive integer is not prime	
"Some red cats don't like tofu"		• prime numbers do not exist	
		every positive integer is not prime	

negations of quantifiers

Domain: Fruit

PurpleFruit(x)

- ∀x PurpleFruit(x) "All fruits are purple"

 - What is ¬∀x PurpleFruit(x)
 "Not all fruits are purple"
- How about ∃x PurpleFruit(x)?

 - "There is a purple fruit"
 If it's the negation, all situations should be covered by a statement and its negation.
 - · Consider the domain {Orange}: Neither statement is true!
 - No.

• How about ∃x ¬PurpleFruit(x)?

- "There is a fruit that isn't purple"Yes.

de Morgan's laws for quantifiers

−∀x	P(x)	$\equiv \exists x \neg P(x)$	
−∃x	P(x)	$\equiv \forall x \neg P(x)$	

scope of quantifiers

example: Notlargest(x) $\equiv \exists$ y Greater (y, x) $\equiv \exists$ z Greater (z, x)

truth value:

doesn't depend on y or z "bound variables" does depend on x "free variable"

quantifiers only act on free variables of the formula they quantify $\forall x (\exists y (P(x, y) \rightarrow \forall x Q(y, x)))$

de Morgan's laws for quantifiers

−∀x	P(x)	≡	∃x ¬P(x)
∽∃x	P(x)	≡	$\forall x \neg P(x)$

"There is no largest integer."

-	¬∃x	∀y	(x ≥ y)
≡	∀x -	¬∀y	(x ≥ y)
≡	$\forall \mathbf{x}$	∃y-	¬ (x ≥ y)
≡	$\forall \mathbf{X}$	∃y	(y > x)

"For every integer there is a larger integer."

scope of quantifiers

 $\exists x (P(x) \land Q(x))$ vs. $\exists x P(x) \land \exists x Q(x)$