
administrivia

Course web: http://www.cs.washington.edu/311

Office hours: 8 office hours (by end of week)
Me: MW 2:30-3:30pm or by appointment

Homework #1: Posted this Friday, due next Friday before class (April 10th)
Gradescope! (stay tuned)

Extra credit: Not required to get a 4.0.
Counts separately.
In total, may raise grade by ~0.1

Call me: James or Professor James or Professor Lee

Don’t: Actually call me.

If you are not CSE yet, please do well!

Don’t be shy (raise your hand in the back)!
Do space out your participation.

logical connectives

p p

T F

F T

p q p q

T T T

T F F

F T F

F F F

p q p q

T T T

T F T

F T T

F F F

p q p q

T T F

T F T

F T T

F F F

NOT

AND

OR XOR

𝑝 → 𝑞

• “If p, then q” is a promise:

• Whenever p is true, then q is true

• Ask “has the promise been broken”

p q p q

F F T

F T T

T F F

T T T

If it’s raining, then I have my umbrella.

related implications

• Implication: p q

• Converse: q p

• Contrapositive: qp

• Inverse: pq

How do these relate to each other?

How to see this?

𝑝 ↔ 𝑞

• p iff q

• p is equivalent to q

• p implies q and q implies p

p q p q

Roger’s second sentence with a truth table

Roger is only orange if whenever he either has tusks or toenails, he
doesn't have tusks and he is an orange elephant.”

p q r 𝒒⊕ 𝒓 ¬𝒒 (𝒒⊕ 𝒓 → ¬𝒒) 𝒑 → (𝒒⊕ 𝒓 → ¬𝒒) 𝒑 → (𝒒⊕ 𝒓 → ¬𝒒) ∧ 𝒑

T T T

T T F

T F T

T F F

F T T

F T F

F F T

F F F

cse 311: foundations of computing

Fall 2014
Lecture 2: Digital circuits & more logic

digital circuits

Computing with logic

– T corresponds to 1 or “high” voltage

– F corresponds to 0 or “low” voltage

Gates:

– Take inputs and produce outputs (functions)

– Several kinds of gates

– Correspond to propositional connectives

AND gate

p q p q

T T T

T F F

F T F

F F F

p q OUT

1 1 1

1 0 0

0 1 0

0 0 0

AND Connective AND Gate

q

p
OUTAND

“block looks like D of AND”

p
OUTANDqp q

vs.

OR gate

p q p q

T T T

T F T

F T T

F F F

p q OUT

1 1 1

1 0 1

0 1 1

0 0 0

OR Connective OR Gate

p
OUTORqp q

vs.

p

q
OR

“arrowhead block looks like ∨”

OUT

NOT gate

 p

NOT Gate

p p

T F

F T

p OUT

1 0

0 1

vs.NOT Connective (Also called
inverter)

p OUTNOT

p OUTNOT

blobs are okay

p OUTNOT

p
q

OUTAND

p
q

OUTOR

You can write gates using blobs instead of shapes.

“gee, thanks.”

combinational logic circuits

Values get sent along wires connecting gates

NOT

OR

AND

AND

NOT

combinational logic circuits

Wires can send one value to multiple gates!

OR

AND

NOT

AND

logical equivalence

Terminology: A compound proposition is a…
– Tautology if it is always true

– Contradiction if it is always false

– Contingency if it can be either true or false

p p

p p

(p q) p

(p q) (p q) (p q) (p q)

Classify!

logical equivalence

Terminology: A compound proposition is a…
– Tautology if it is always true

– Contradiction if it is always false

– Contingency if it can be either true or false

𝑝 ∧ 𝑞 ∧ 𝑟 ∨ ¬𝑝 ∧ 𝑞 ∧ ¬𝑟 ∧ 𝑝 ∨ 𝑞 ∨ ¬𝑠 ∨ 𝑝 ∧ 𝑞 ∧ 𝑠

Classify!

NOT

OR

AND

AND

NOT

logical equivalence

A and B are logically equivalent if and only if

A B is a tautology
i.e. A and B have the same truth table

The notation A B denotes A and B are logically equivalent.

Example: p p

p p p p p

A B vs. A B

A B says that two propositions A and B always mean the same thing.

A B is a single proposition that may be true or false depending on the
truth values of the variables in A and B.

but A B and (A B) T have the same meaning.

Note: Why write A B and not A=B ?
[We use A=B to say that A and B are precisely the same proposition

(same sequence of symbols)]

My code compiles or there is a bug.
[let’s negate it]

de Morgan’s laws

Write NAND using NOT and OR:
“Always wear breathable fabrics
when you get your picture taken.”

de Morgan’s laws

p q p q p q p q (p q) (p q) (p q)

T T

T F

F T

F F

Verify: 𝑝 𝑞 ≡ (¬ 𝑝 ∨ ¬ 𝑞)

 (𝑝 𝑞) 𝑝 𝑞
 (𝑝 𝑞) 𝑝 𝑞

if !(front != null && value > front.data)
front = new ListNode(value, front);

else {
ListNode current = front;
while !(current.next == null || current.next.data >= value)

current = current.next;
current.next = new ListNode(value, current.next);

}

de Morgan’s laws

law of implication

p q p q p p q (p q) (p q)

T T

T F

F T

F F

𝑝 → 𝑞 ≡ (¬ 𝑝 ∨ 𝑞)

computing equivalence

Describe an algorithm for computing if two logical
expressions/circuits are equivalent.

What is the run time of the algorithm?

some familiar properties of arithmetic

• 𝑥 + 𝑦 = 𝑦 + 𝑥 (commutativity)

• 𝑥 ⋅ 𝑦 + 𝑧 = 𝑥 ⋅ 𝑦 + 𝑥 ⋅ 𝑧 (distributivity)

• 𝑥 + 𝑦 + 𝑧 = 𝑥 + (𝑦 + 𝑧) (associativity)

Logic has similar algebraic properties

some familiar properties of arithmetic

• 𝑥 + 𝑦 = 𝑦 + 𝑥 (commutativity)

– 𝑝 ∨ 𝑞 ≡ 𝑞 ∨ 𝑝

– 𝑝 ∧ 𝑞 ≡ 𝑞 ∧ 𝑝

• 𝑥 ⋅ 𝑦 + 𝑧 = 𝑥 ⋅ 𝑦 + 𝑥 ⋅ 𝑧 (distributivity)

– 𝑝 ∧ 𝑞 ∨ 𝑟 ≡ 𝑝 ∧ 𝑞 ∨ (𝑝 ∧ 𝑟)

– 𝑝 ∨ 𝑞 ∧ 𝑟 ≡ 𝑝 ∨ 𝑞 ∧ (𝑝 ∨ 𝑟)

• 𝑥 + 𝑦 + 𝑧 = 𝑥 + (𝑦 + 𝑧) (associativity)

– 𝑝 ∨ 𝑞 ∨ 𝑟 ≡ 𝑝 ∨ 𝑞 ∨ 𝑟

– 𝑝 ∧ 𝑞 ∧ 𝑟 ≡ 𝑝 ∧ (𝑞 ∧ 𝑟)

properties of logical connectives

• Identity

– 𝑝 ∧ T ≡ 𝑝

– 𝑝 ∨ F ≡ 𝑝

• Domination

– 𝑝 ∨ T ≡ T

– 𝑝 ∧ F ≡ F

• Idempotent

– 𝑝 ∨ 𝑝 ≡ 𝑝

– 𝑝 ∧ 𝑝 ≡ 𝑝

• Commutative

– 𝑝 ∨ 𝑞 ≡ 𝑞 ∨ 𝑝

– 𝑝 ∧ 𝑞 ≡ 𝑞 ∧ 𝑝

You will always get this list.

• Associative
𝑝 ∨ 𝑞 ∨ 𝑟 ≡ 𝑝 ∨ 𝑞 ∨ 𝑟
𝑝 ∧ 𝑞 ∧ 𝑟 ≡ 𝑝 ∧ 𝑞 ∧ 𝑟

• Distributive
𝑝 ∧ 𝑞 ∨ 𝑟 ≡ 𝑝 ∧ 𝑞 ∨ (𝑝 ∧ 𝑟)
𝑝 ∨ 𝑞 ∧ 𝑟 ≡ 𝑝 ∨ 𝑞 ∧ (𝑝 ∨ 𝑟)

• Absorption
𝑝 ∨ 𝑝 ∧ 𝑞 ≡ 𝑝
𝑝 ∧ 𝑝 ∨ 𝑞 ≡ 𝑝

• Negation
𝑝 ∨ ¬𝑝 ≡ T
𝑝 ∧ ¬𝑝 ≡ F

