
administrivia

Course web: http://www.cs.washington.edu/311

Office hours:  8 office hours (by end of week)
Me: MW 2:30-3:30pm or by appointment

Homework #1: Posted this Friday, due next Friday before class (April 10th)
Gradescope!  (stay tuned)

Extra credit: Not required to get a 4.0.
Counts separately.
In total, may raise grade by ~0.1

Call me: James or Professor James or Professor Lee

Don’t: Actually call me.

If you are not CSE yet, please do well!

Don’t be shy (raise your hand in the back)!  
Do space out your participation.



logical connectives
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𝑝 → 𝑞

• “If p, then q” is a promise:

• Whenever p  is true, then q is true

• Ask “has the promise been broken”
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If it’s raining, then I have my umbrella.



related implications

• Implication: p q

• Converse: q p

• Contrapositive: qp

• Inverse: pq

How do these relate to each other?

How to see this?



𝑝 ↔ 𝑞

• p iff q

• p is equivalent to q

• p implies q and q implies p

p q p  q



Roger’s second sentence with a truth table

Roger is only orange if whenever he either has tusks or toenails, he 
doesn't have tusks and he is an orange elephant.”

p q r 𝒒⊕ 𝒓 ¬𝒒 (𝒒⊕ 𝒓 → ¬𝒒) 𝒑 → ( 𝒒⊕ 𝒓 → ¬𝒒) 𝒑 → ( 𝒒⊕ 𝒓 → ¬𝒒) ∧ 𝒑

T T T

T T F

T F T

T F F

F T T

F T F

F F T

F F F



cse 311: foundations of computing

Fall 2014
Lecture 2: Digital circuits & more logic



digital circuits

Computing with logic

– T corresponds to 1 or “high” voltage 

– F corresponds to 0 or “low” voltage

Gates: 

– Take inputs and produce outputs (functions)

– Several kinds of gates

– Correspond to propositional connectives



AND gate
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OR gate
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NOT gate
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blobs are okay
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You can write gates using blobs instead of shapes.

“gee, thanks.”



combinational logic circuits

Values get sent along wires connecting gates 
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combinational logic circuits

Wires can send one value to multiple gates!
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logical equivalence

Terminology: A compound proposition is a…
– Tautology if it is always true

– Contradiction if it is always false

– Contingency if it can be either true or false

p   p
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(p  q)  (p   q)  ( p  q)  ( p   q) 

Classify!



logical equivalence

Terminology:  A compound proposition is a…
– Tautology if it is always true

– Contradiction if it is always false

– Contingency if it can be either true or false

𝑝 ∧ 𝑞 ∧ 𝑟 ∨ ¬𝑝 ∧ 𝑞 ∧ ¬𝑟 ∧ 𝑝 ∨ 𝑞 ∨ ¬𝑠 ∨ 𝑝 ∧ 𝑞 ∧ 𝑠

Classify!
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logical equivalence

A and B are logically equivalent if and only if

A  B is a tautology
i.e. A and B have the same truth table

The notation A  B denotes A and B are logically equivalent.

Example: p    p

p  p  p p  p



A  B vs. A  B

A  B says that two propositions A and B always mean the same thing.

A  B is a single proposition that may be true or false depending on the 
truth values of the variables in A and B.

but A  B and (A  B)  T have the same meaning.

Note:  Why write A  B and not  A=B ?
[We use A=B to say that A and B are precisely the same proposition

(same sequence of symbols)]



My code compiles or there is a bug.
[let’s negate it]

de Morgan’s laws

Write NAND using NOT and OR:
“Always wear breathable fabrics
when you get your picture taken.”



de Morgan’s laws

p q  p  q  p   q p  q  (p  q)  (p  q)  ( p   q)
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Verify:     𝑝  𝑞 ≡ (¬ 𝑝 ∨ ¬ 𝑞)



 (𝑝 𝑞) 𝑝 𝑞
 (𝑝 𝑞) 𝑝 𝑞

if !(front != null && value > front.data)
front = new ListNode(value, front);

else {
ListNode current = front;
while !(current.next == null || current.next.data >= value)

current = current.next;
current.next = new ListNode(value, current.next);

}

de Morgan’s laws



law of implication

p q p  q  p  p  q (p  q) ( p  q)
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𝑝 → 𝑞 ≡ (¬ 𝑝 ∨ 𝑞)



computing equivalence

Describe an algorithm for computing if two logical 
expressions/circuits are equivalent.

What is the run time of the algorithm?



some familiar properties of arithmetic

• 𝑥 + 𝑦 = 𝑦 + 𝑥 (commutativity)

• 𝑥 ⋅ 𝑦 + 𝑧 = 𝑥 ⋅ 𝑦 + 𝑥 ⋅ 𝑧 (distributivity)

• 𝑥 + 𝑦 + 𝑧 = 𝑥 + (𝑦 + 𝑧) (associativity)

Logic has similar algebraic properties



some familiar properties of arithmetic

• 𝑥 + 𝑦 = 𝑦 + 𝑥 (commutativity)

– 𝑝 ∨ 𝑞 ≡ 𝑞 ∨ 𝑝

– 𝑝 ∧ 𝑞 ≡ 𝑞 ∧ 𝑝

• 𝑥 ⋅ 𝑦 + 𝑧 = 𝑥 ⋅ 𝑦 + 𝑥 ⋅ 𝑧 (distributivity)

– 𝑝 ∧ 𝑞 ∨ 𝑟 ≡ 𝑝 ∧ 𝑞 ∨ (𝑝 ∧ 𝑟)

– 𝑝 ∨ 𝑞 ∧ 𝑟 ≡ 𝑝 ∨ 𝑞 ∧ (𝑝 ∨ 𝑟)

• 𝑥 + 𝑦 + 𝑧 = 𝑥 + (𝑦 + 𝑧) (associativity)

– 𝑝 ∨ 𝑞 ∨ 𝑟 ≡ 𝑝 ∨ 𝑞 ∨ 𝑟

– 𝑝 ∧ 𝑞 ∧ 𝑟 ≡ 𝑝 ∧ (𝑞 ∧ 𝑟)



properties of logical connectives

• Identity

– 𝑝 ∧ T ≡ 𝑝

– 𝑝 ∨ F ≡ 𝑝

• Domination

– 𝑝 ∨ T ≡ T

– 𝑝 ∧ F ≡ F

• Idempotent

– 𝑝 ∨ 𝑝 ≡ 𝑝

– 𝑝 ∧ 𝑝 ≡ 𝑝

• Commutative

– 𝑝 ∨ 𝑞 ≡ 𝑞 ∨ 𝑝

– 𝑝 ∧ 𝑞 ≡ 𝑞 ∧ 𝑝

You will always get this list.

• Associative
𝑝 ∨ 𝑞 ∨ 𝑟 ≡ 𝑝 ∨ 𝑞 ∨ 𝑟
𝑝 ∧ 𝑞 ∧ 𝑟 ≡ 𝑝 ∧ 𝑞 ∧ 𝑟

• Distributive
𝑝 ∧ 𝑞 ∨ 𝑟 ≡ 𝑝 ∧ 𝑞 ∨ (𝑝 ∧ 𝑟)
𝑝 ∨ 𝑞 ∧ 𝑟 ≡ 𝑝 ∨ 𝑞 ∧ (𝑝 ∨ 𝑟)

• Absorption
𝑝 ∨ 𝑝 ∧ 𝑞 ≡ 𝑝
𝑝 ∧ 𝑝 ∨ 𝑞 ≡ 𝑝

• Negation
𝑝 ∨ ¬𝑝 ≡ T
𝑝 ∧ ¬𝑝 ≡ F


