
CSE$311:$FoundationsofComputing$(Spring,$2015)$
Homework7 Out:Fri,22=May.$Due:Friday,29=May,beforeclass(1pm) on$Gradescope
Additional directions: You$should$write$down$carefully$argued$solutionstothe$following$
problems.$Your$first$goal$istobe$complete$and$correct.$A$secondary$goalisto$keep$your$
answers$simple$and$succinct.$The$idea$is$that$your$solution$shouldbeeasytounderstandfor
someonewhohas$just$seentheproblemforthe$first$time.$(Re=read$your$answers$with$this$
standardinmind!)Youmayuseany$results$provedinlecture$(without$proof).$Anything$else$
mustbeargued$rigorously.$Make$sure$you$indicate$the$specific$stepsofyour$proofs$by$
induction.$

1.CFGdesign$(12$points)$

For$each$ofthefollowing$problems,$you$will$constructacontext=free$grammar$(CFG)$
that$generates$the$described$language.$

(a) Thesetofallbinary$strings$of$even$length$whose$middletwocharactersare
equal,$e.g.$0100111111or0011001100.$$

(b) 0!1!0!!!! $$
(c) All$binary$strings$that$containatleast$three$0’sandat$most$two$1’s.$
(d) Thealphabet$contains$the$four$characters$),$(,$],$[.$Give$aCFGforthelanguage$

of$all$$correctly$parenthesized$expressions$where$“(“$matches$“)”and“[“$
matches$“]”.$For$example,([](([]))[(()())[(([]))]])butnot$([)]$$

$

2.DFAdesign$(20$points)$$

For$each$ofthefollowing,$create$aDFAthat$recognizes$the$language$given.$

(a)$$Thesetofallbinary$strings$thatendwitha0"and$have$odd$length,$or$start$witha1"
and$have$even$length.$

(b)$$Thesetofallbinary$strings$that$don’t$contain$100.$$

(c)$$Thesetofallbinary$strings$that$contain$at$least$two$0’s.$$

(d)$$Thesetofallbinary$strings$that$contain$at$most$two$1’s.$Use$different$state$labels$
fromtheonesyouusedinthe$previous$part.$$

(e)$$Combinethemachines$from$the$previous$two$parts$to$produce$a$machine$that$
recognizesthesetofall$binary$strings$that$containatleasttwo0’sORat$most$two$1’s.$

!

3. NFA design (15 points)

For each of the following, create an NFA that recognizes the given language.

(a) The set of all binary strings that start with an even numbers of 0’s or end with an odd
number of 1′𝑠.

(b) The set of all binary strings that start with an even number of 0′s and end with an odd
number of 1’s.

4. FSM design (20 points)

In the old days of video gaming, you had to go through a very specific set of actions in order to
deal damage to an enemy boss. Your FSM should have inputs S (sword), A (arrow), D (dodge),
P (pause). The outputs are OUCH (boss damage), OOF (player damage), and FAIL (player
death).

- If the actions are D, A, D, S in order, you should output OUCH.
- The preceding sequence can have pauses interspersed, but when the game is paused,

no inputs are registered. (So after one pause, no other inputs matter until pause is
pressed again.)

- Any other sequence of (non-pause) actions should result in output OOF.
- After an OUCH or OOF output, the sequence of actions is reset.
- If three OOF outputs occur in a row without an OUCH in between, you should output

FAIL. From the FAIL state, no actions matter. Nothing matters. You have failed.

You may notice there is no way to defeat the boss. Tough. Video games used to be harder.

5. State minimization (10 points)

Use the algorithm for minimization we discussed in lecture to minimize the following
automaton. Be sure to write down every step of the algorithm and circle the groups at every
step.

6. Extra credit: Boss mode

We can’t leave the boss undefeated. It turns out that, since we didn’t do the tutorial (in the old
days, you read a manual!), we didn’t know that there are two stances, and in each stance the
actions S, A, D have different effects. The input T causes your character to change stances.

They published a strategy guide on reddit, but it’s kind of confusing. Every non-empty sequence
of inputs causes exactly one of three things to happen: Either your character dies, or the boss
dies, or the sequence allows the boss to heal, resetting the battle. All we have are the following
cryptic rules about sequences of inputs. Here, Φ and Ψ represent different sequences of inputs.

- Φ ⊢ Ψ represents the two rules:
o If Φ kills you, then Ψ causes the boss to heal.
o If Φ causes the boss to heal, then Ψ kills you.

- For any sequence of inputs Φ, we have 𝐓Φ𝐓 ⊢ Φ
- If Φ ⊢ Ψ, then

o 𝐃Φ ⊢ 𝐓Ψ
o 𝐀Φ ⊢ Ψ𝑅
o 𝐒Φ ⊢ ΨΨ

But after you invested all this time in reading, you’re not interested in just killing the boss. You
want to prove your dominance by beating the boss as fast as possible. Find the shortest possible
sequence of moves that are guaranteed to kill the boss, and prove your answer correct.

6. Extra credit: Robot TA

After years of holding office hours, you’ve finally decided that maybe a robot could do just as
well. Your robot’s EmpathyEngine™ is capable of recognizing three possible student states:
whining, confusion, and asleep. And your robot can take four actions: console (“Your answer
is wrong, but I like your enthusiasm”), destroy, offer-more-points, and lame-joke.

As a first order of business, you design a relatively simple language to control the robot’s
reactions.

 〈Stmt〉 = if 〈EmotionalState〉 then 〈Stmt〉 |
 if 〈EmotionalState〉 then 〈Stmt〉 else 〈Stmt〉 |

 〈ActionSeq〉

 〈ActionSeq〉 = 〈Action〉 | 〈ActionSeq〉 〈Action〉

 〈EmotionalState〉 = whining | confusion | asleep

 〈Action〉 = console | destroy | offer-more-points | lame-joke

After some initial experiments, you realize that sometimes the robot is performing the destroy
action when it should be making a lame joke. (Fortunately, your robot skills are somewhat worse
than your AI skills, and the RobotDeathChop™ is more like an awkward pat on the shoulder
while the robot screams “death chop! death chop!”) This is because your grammar is ambiguous.
There are some snippets of code that can be parsed in different ways, and those different ways
have different meanings.

(a) Show an example of a string in the language that has two different parse trees.

(b) Give a new grammar for the same language that is unambiguous in the sense that every
string has a unique parse tree.

