
CSE 311: Foundations of Computing (Spring, 2015) 
Homework 5          Out: Wed, 6-May.  Due: Friday, 15-May, before class (1 pm) on Gradescope 

 

Additional directions:  You should write down carefully argued solutions to the following problems.  Your first 

goal is to be complete and correct.  A secondary goal is to keep your answers simple and succinct.  The idea is 

that your solution should be easy to understand for someone who has just seen the problem for the first time.  

(Re-read your answers with this standard in mind!)  You may use any results proved in lecture (without proof).  

Anything else must be argued rigorously.  Make sure you indicate the specific steps of your proofs by 

induction. 

 

[The extra credit problems are forthcoming (after Friday, May 8).] 

 

1. An induction with equality (10 points) 
 

Prove that for every positive integer 𝑛, it holds that 

∑ 𝑘 2𝑘 = (𝑛 − 1)2𝑛+1 + 2

𝑛

𝑘=1

 

  



 

2. In induction with inequality (10 points) 
  

Prove that    3𝑛 < 𝑛!   if 𝑛 > 6 is an integer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



3. A harder inequality (12 points) 
 

Prove that if 𝑥 and 𝑦 are real numbers with 0 < 𝑦 < 𝑥, then for any positive integer 𝑛, 

𝑥𝑛 − 𝑦𝑛 ≤ 𝑛 𝑥𝑛−1 (𝑥 − 𝑦) 

  



4.  An induction with divisibility (12 points) 
 

Use induction to show that if 𝑆 ⊆ {1,2, … , 2𝑛} and |𝑆| ≥ 𝑛 + 1, then there are distinct elements 𝑎, 𝑏 ∈ 𝑆 such 

that 𝑎 ≡ 0 (mod 𝑏). 

  



5.  Modular exponentiation (8 points) 
 

Compute 597 mod 100  by hand using the modular exponentiation algorithm, showing your intermediate 

results.  How many multiplications does the algorithm use for this computation? 

  



6.  Extended Euclidean algorithm (12 points) 
 

Use the extended Euclidean algorithm to find gcd (1001, 100001), then express it as a linear combination of 

1001 and 100001. 

 

 

 

 

 

 

 

  



7.  Modular congruences  (15 points) 
 

(a) Prove that there are no solutions to the modular equation 9𝑥 ≡ 2 (mod 15) 

 

 

 

 

 

 

(b) Find an 𝑥 such that 200 𝑥 ≡ 13 (mod 1001).  Show your work. 

 
  



8.  Extra credit: RSA and modular exponentiation 
 

We know that we can reduce the base of exponent modulo 𝑛:  𝑎𝑘 ≡ (𝑎 mod 𝑛)𝑘   (mod 𝑛). 

But the same is not true of the exponent itself!  We cannot write 𝑎𝑘 ≡ 𝑎𝑘 mod 𝑛 (mod 𝑛).  This is easily seen 

to be false in general.  Consider, for instance, 210 mod 3 = 1, but 210 mod 3 mod 3 = 21 mod 3 = 2. 

 

The correct law for the exponent is more subtle.  Define 

𝜑(𝑛) = |{ 𝑚 ∈ ℕ ∶ 1 ≤ 𝑚 ≤ 𝑛 − 1, gcd(𝑚, 𝑛) = 1 }| 

For instance, if 𝑝 is a prime, you should check that 𝜑(𝑝) = 𝑝 − 1.  In this problem, you will prove the 
following. 

 

Theorem:  For all integers  𝑛 ≥ 1 and 𝑎 > 0 with gcd(𝑎, 𝑛) = 1, it holds that 𝑎𝜑(𝑛) ≡ 1 (mod 𝑛). 

 

Your proof should proceed as follows.  Let 𝑅 = { 𝑚 ∶ 1 ≤ 𝑚 ≤ 𝑛 − 1, gcd(𝑚, 𝑛) = 1 }. 

 
(a) Define the set 𝑎𝑅 = { 𝑎𝑥 mod 𝑛 ∶ 𝑥 ∈ 𝑅}.  Prove that 𝑎𝑅 = 𝑅 for every integer 𝑎 > 0 with 

gcd(𝑎, 𝑛) = 1. 

 

(b) Consider the product of all the elements in 𝑅 modulo 𝑛 and the product of all the elements in 𝑎𝑅 
modulo 𝑛.  By comparing those two expressions, prove carefully that the theorem is true. 
 

(c) Using the theorem, prove that under the assumptions, for any 𝑏 ≥ 0, we have 

𝑎𝑏 ≡ 𝑎𝑏 mod 𝜑(𝑛)  (mod 𝑛). 
 

This theorem is the fundamental fact underlying the RSA cryptosystem. 

Let 𝑒 be such that gcd(𝑒, 𝜑(𝑛)) = 1.  Recall that in this case (by Bezout’s theorem), we can find a 

multiplicative inverse to 𝑑 to 𝑒 modulo 𝜑(𝑛), i.e. such that 𝑒𝑑 ≡ 1 (mod 𝜑(𝑛)). 

 

(d) Suppose you know 𝑑.  Let 𝑚 ∈ {0,1, … , 𝑛 − 1} be a message.   Given the value 𝑐 = 𝑚𝑒  mod 𝑛, state 
an efficient algorithm for recovering the initial message 𝑚, and argue why it’s correct. 

 

Now we’ll see how RSA works. 

 

(e) Prove that if gcd(𝑎, 𝑏) = 1 then 𝜑(𝑎𝑏) = 𝜑(𝑎)𝜑(𝑏) for all positive integers 𝑎, 𝑏.  This shows that if 
𝑝 and 𝑞 are prime then 𝜑(𝑝𝑞) = (𝑝 − 1)(𝑞 − 1). 

 

Choose two large distinct prime numbers 𝑝 and 𝑞.  We’ll see in the next homework extra credit how you can 
generate large primes efficiently.  Compute the product 𝑛 = 𝑝𝑞 and the value 𝜑(𝑛) = (𝑝 − 1)(𝑞 − 1).  Also 

choose an integer 𝑒 such that gcd(𝑒, (𝑝 − 1)(𝑞 − 1)) = 1, and find its multiplicative inverse 𝑑 modulo 
(𝑝 − 1)(𝑞 − 1). 

 



Your public key is the pair (𝑛, 𝑒) and your private key is the pair (𝑛, 𝑑).  You release (𝑛, 𝑒) to the public and 
keep (𝑛, 𝑑) secret.  The idea is now that someone can take a message 𝑚 and encrypt it to 𝑐 = 𝑚𝑒  (mod 𝑛) 
using the modular exponentiation algorithm and your public key.  You, knowing 𝑑, can use part (c) to 
decrypt the message. 

This is basically how SSL works:  To send your password to your bank, you take their public key and use it to 
encrypt your password.  Then the bank can decrypt your password (to see if you can login), but no 
eavesdropper sniffing your wifi can do the same.  The benefit of this public key cryptosystem is that you 
don’t need a secure channel in order to communicate securely with your bank.  (Classical private key 
cryptosystems would require that you meet ahead of time and exchange a secret key before being able to 
communicate securely.) 

 

(f) Prove that if an attacker knew the factorization 𝑛 = 𝑝𝑞 then they would have an efficient algorithm 
to decrypt the message (and thereby break the cryptosystem). 

 

Presently, the most efficient known way to break RSA is to factor 𝑛.  Using any known factoring algorithm, 
this takes an extremely long time (if the primes 𝑝, 𝑞 are chosen large enough initially), and that’s what makes 
RSA secure in practice.  But it is not known (i) whether factoring is actually a difficult computational 
problem, and (ii) whether breaking RSA requires factoring---there could be an easier way to recover the 
plaintext message. 

 

 


