
cse 311: foundations of computing

Fall 2015
Lecture 29: Reductions and Turing machines

the Halting problem is undecidable

Given: - CODE(P) for any program P
- input x

Output: true if P halts on input x
false if P does not halt on input x

(or CODE(P) is not a valid program)

It isn’t possible to write a program that solves the
Halting Problem.

H solves the halting problem implies that
H(CODE(D),x) is true iff D(x) halts, H(CODE(D),x) is false iff not

Suppose D(CODE(D)) halts.
Then, we must be in the second case of the if.
So, H(CODE(D), CODE(D)) is false
Which means D(CODE(D)) doesn’t halt

Suppose D(CODE(D)) doesn’t halt.
Then, we must be in the first case of the if.
So, H(CODE(D), CODE(D)) is true.
Which means D(CODE(D)) halts.

public static void D(x) {
if (H(x,x) == true) {

while (true); /* don’t halt */
}
else {

return; /* halt */

}
}

Does D(CODE(D)) halt?

Contradiction!

proving that a language is undecidable

Consider a language 𝐿 ⊆ Σ∗

We say that 𝐿 is undecidable if there is no Java program
that takes 𝑥 ∈ Σ∗ as input and outputs

true if 𝑥 ∈ 𝐿

false otherwise

HALTING = { 𝐶, 𝑥 ∶ 𝐶 = CODE(𝑃) and 𝑃 halts on input 𝑥 }

Theorem: HALTING is undecidable.

Strategy: To show that some other language 𝐿 is
undecidable, we could show that if we could decide 𝐿, we
could also decide HALTING. Since HALTING is undecidable,
it must be that 𝐿 is also undecidable!

a useful tool: hardcoding

Define the language:
HaltsNoInput

= { 𝑃 ∶ 𝑃 is a program that halts when run with no input }

Goal: Show that if we could decide HaltsNoInput, we could also
decide HALTING.

a useful tool: hardcoding

HaltsNoInput
= { 𝑃 ∶ 𝑃 is a program that halts when run with no input }

equivalence of programs is undecidable

EQUIV = { (𝑃, 𝑄) ∶ programs 𝑃 and 𝑄 have same behavior on every input }

division by zero

DivByZero = { (𝑄, 𝑥) ∶ 𝑄 attempts to divide by 0 when run on input 𝑥 }

computers and algorithms

• Does Java (or any programming language) cover all possible
computation? Every possible algorithm?

• There was a time when computers were people who did calculations
on sheets paper to solve computational problems

• Computers as we known them arose from trying to understand
everything these people could do.

before Java

1930’s:
How can we formalize what algorithms are possible?

• Turing machines (Turing, Post)
– basis of modern computers

• Lambda Calculus (Church)
– basis for functional programming

• m-recursive functions (Kleene)
– alternative functional programming basis

Turing machines

Church-Turing Thesis:
Any reasonable model of computation that includes all possible

algorithms is equivalent in power to a Turing machine

Evidence
– Intuitive justification
– Huge numbers of equivalent models to TM’s based on

radically different ideas

Turing machines

• Finite Control
– Brain/CPU that has only a finite # of possible “states of mind”

• Recording medium
– An unlimited supply of blank “scratch paper” on which to write

& read symbols, each chosen from a finite set of possibilities
– Input also supplied on the scratch paper

• Focus of attention
– Finite control can only focus on a small portion of the recording

medium at once
– Focus of attention can only shift a small amount at a time

Turing machines

• Recording medium
– An infinite read/write “tape” marked off into cells
– Each cell can store one symbol or be “blank”
– Tape is initially all blank except a few cells of the tape containing the

input string
– Read/write head can scan one cell of the tape - starts on input

• In each step, a Turing machine
– Reads the currently scanned symbol
– Based on current state and scanned symbol

Overwrites symbol in scanned cell
Moves read/write head left or right one cell
Changes to a new state

• Each Turing Machine is specified by its finite set of rules

Turing machines

_ _ 1 1 0 1 1 _ _

_ 0 1

s1 (1, L, s3) (1, L, s4) (0, R, s2)

s2 (0, R, s1) (1, R, s1) (0, R, s1)

s3

s4

Turing machines

Ideal Java/C programs:
– Just like the Java/C you’re used to programming

with, except you never run out of memory
Constructor methods always succeed malloc in C
never fails

Equivalent to Turing machines except a lot easier to program:
– Turing machine definition is useful for breaking

computation down into simplest steps
– We only care about high level so we use programs

Turing’s big idea: machines as data

Original Turing machine definition:
– A different “machine” M for each task
– Each machine M is defined by a finite set of possible

operations on finite set of symbols
M has a finite description as a sequence of
symbols, its “code” denoted <M>

You already are used to this idea with the notion of the
program code or text but this was a new idea in Turing’s time.

Turing’s big idea: a universal TM

• A Turing machine interpreter U
– On input <M> and its input x, U outputs the same thing as M

does on input x
– At each step it decodes which operation M would have

performed and simulates it.
• One Turing machine is enough

– Basis for modern stored-program computer
Von Neumann studied Turing’s UTM design

M
input

x
output

M(x) U
x output

M(x)
M

Rice’s theorem (“can’t tell a book by its cover”)

Not every problem on programs is undecidable!
Which of these is decidable?
• Input CODE(P) and x

Output: true if P prints “ERROR” on input x
after less than 100 steps

false otherwise
• Input CODE(P) and x

Output: true if P prints “ERROR” on input x
after more than 100 steps

false otherwise

Compilers Suck Theorem (informal):
Any “non-trivial” property the input-output behavior of Java
programs is undecidable.

takeaway

• Can’t rely on the idea of improved compilers and
programming languages to eliminate major programming
errors
– truly safe languages can’t possibly do general computation

• Document your code
– there is no way you can expect someone else to figure out

what your program does with just your code; since in
general it is provably impossible to do this!

foundations I, complete (almost)

What’s next?
Foundations II: Probability, statistics, and uncertainty.

The final exam is Monday, Dec 14, 2015
Notes: One page of notes allowed, front and back.
Review session:
• Sunday at 2pm in EEB 105

And then…

