cse 311: foundations of computing

Fall 2015
Lecture 28: The halting problem and undecidability

SO T STUCK IN THIS
1 DONT KNOW WHY.
DESERT FoR ETERNITY. T TosT wokE P

HERE ONE DAY,
-~ - =
I NEVER FEEL T JUST WALK. GAND AND ROCKS | [STRETCH TO INFINTTY,

HUNGRY OR
THIRSTY. f _ |
‘._'—H%—-- % 4 scsrasT
L - CAN TELL.

THERE'S PLENTY OF TIHE | | TVE REDERWED PHYSICS, TOO T WORKED OUT THE
FOR THINKING OUT HERE. mmmmm INKS 1IN O&hn‘m FIECHANICS
Y.

e et B

cd
AN ETERNITY, Reay,| |ANDTHEN sone{ | A Swiss PATENT ofFICE.

ONE DAY T STARTED

H!r_'_..-':. =, m_
S\
|

a5

last time

We saw that the real numbers between 0 and 1 are uncountable.

Suppose, for the sake of contradiction, that there is a list of them:

s Ehis st s e ey et et L Fhsrsaa

e

| Flipping rule;
- W digitis 5, makeif 1.
3 | Hdigitisnot 5 makeits,

q

[]
© o o

(JL)

| Foreveryn z 1 |
(R o e 70 e 5
| vecauseenumbersditforen | O 0

So-the fist is incomplete, which is-a contradiction.

Thusthe real numbers between 0 and 1 are wncountable:

, 9} 1s uncountable

the set of all functions f : N - {0, ...

Supposed listing of all the functions:

L N o < Lo (= N~ (=S)

the set of all functions f : N - {0, ..., 9} is uncountable

Supposed listing of all the functions:

1 2 3 4 /Flipping rule: A
h 51 0 0 0| 1ff(n)=5setD(n) =1
f, 3 35 3 3| Iff,(n) #5,setD(n) =5)
fy 1 4 2° 8 5 71 1 4
f, 1 4 1 5 9 2 6 5
fs 12 1 2 221 2 2
fs 2 5 0 0 o0 05 0 O
f, 7 1 8 2 8 1 35 9
fy 6 1 8 0 3 3 9 4°

the set of all functions f : N - {0, ..., 9} is uncountable

Supposed listing of all the functions:

4 N
1 1 2 3 4 Flipping rule:
h 5 0 0 0 iff,(m)=5setd(n) =1
f, 3 35 3 3| Iff,(n) #5setD(n) =5)
fy 1 4 2°8 5 7 1 4
f, 1 4 1 5 9 2 6 5
fs 12 1 2 221 2 2
fs 2 5 0 o0 0 05 0 0
5

f; 7 1 8 2 8 1 § 2

For all n, we have D(n) # f,,(n). Therefore D # f,, for any n and the list is
Incomplete! = {f|f:N—-{0,1,..,9}}is not countable

uncomputable functions

We have seen that:
— [last time] The set of all (Java) programs is countable
— The set of all functions f : N — {0, ..., 9} is not countable

So: There must be some function f : N — {0, ..., 9} that is not
computable by any Java program!

recall our language picture

All

Context-Free
Binary Palindromes

Regular

DFA
0* NFA
Regex

Finite

{001, 10, 12)

a cse 141 assignment

Students should write a Java program that:
— Prints “Hello” to the console
— Eventually exits

Gradelt, Practicelt, etc. need to grade the students.

How do we write that grading program?

follow up question

What does this program do?

M <=12 (1,
N %)2 (., +1,0): % == |

_ &&l! ?(printf("%d\t",___ /), (__,_
_H10) % >1&& % < [? (__,1+
(| % %_))__<_*
+1,___):0;}main(){_(100,0,0);}

?_(

]

follow up question #2

public static void collatz(n) {

if (n == 1) {
return 1;

}
if (n % 2 ==0) {
return collatz(n/2)

}
else {

return collatz(3n + 1)
}

¥

What does this program do?
. on n=5?

. 0N N=10000000000000000001 ?

a cse 141 assignment

Students should write a Java program that:
— Prints “Hello” to the console
— Eventually exits

Gradelt, Practicelt

ding program?

some notation

We're going to be talking about Java code.
CODE (P) will mean “the code of the program P”

So, consider the following function:
public String P(String x) {
return new String(Arrays.sort(x.toCharArray());

¥

What is P(CODE(P))?
““0)).. ;AACPSSaaabceeggghiiiiInnnnnooprrrrrrrrrrrsssttttttuuwxxyy{}"

the Halting problem

Given: - CODE(P) for any program P
- Input x
Output: true if P halts on input x

false if P does not halt on input x

It turns out that it isn't possible to write a program
that solves the Halting Problem.

proof by contradiction

 Suppose that H Is a Java program that solves the
Halting problem. Then we can write this program:
public static void D(x) {
if (H(x,x) == true) {
while (true); /* don’t halt */

}

else {
return; /* halt */

¥

}

* Does D(CODE(D)) halt?

public static void D(x) {
if (H(x,x) == true) {
‘Does D(CODE (D)) halt? ‘ , while (true); /* don’t halt */
else {
return; /* halt * /
}
}

H solves the halting problem implies that
H(CODE(D),x) is true iff D(x) halts, H(CODE(D),x) is false iff not

| Does D(CODE(D)) halt? |

public static void D(x) {

if (H(x,x) == true) {

while (true); /* don’t halt */
}
else {

return; /* halt */
}

}

H solves the halting problem implies that

H(CODE(D),x) is true iff D(x) halts, H

Suppose D(CODE (D)) halts.

H(CODE(D),x) is false iff not

Then, we must be in the second case of the Iif.
So, H(CODE (D), CODE(D)) is false
Which means D(CODE (D)) doesn't halt

public static void D(x) {
if (H(x,x) == true) {
‘Does D(CODE (D)) halt? ‘ \ while (true); /* don’t halt */
else {
return; [halt */
}
}

H solves the halting problem implies that
H(CODE(D),x) is true iff D(x) halts, H(CODE(D),x) is false iff not

Suppose D(CODE (D)) halts.
Then, we must be in the second case of the if.
So, H(CODE (D), CODE(D)) is false
Which means D(CODE (D)) doesn't halt

Suppose D(CODE (D)) doesn't halt.
Then, we must be in the first case of the if.
So, H(CODE (D), CODE(D)) is true.
Which means D(CODE (D)) halts.

public static void D(x) {
if (H(x,x) == true) {
‘Does D(CODE (D)) halt? ‘ \ while (true); /* don’t halt */
else {
return; /* halt */
}
}

H solves the halting problem implies that
H(CODE(D),x) is true iff D(x) halts, H(CODE(D),x) is false iff not

Suppose D(CODE (D)) halts.
Then, we must be in the second case of the if.
So, H(CODE (D), CODE(D)) is false
Which means D(CODE (D)) doesn't halt

Suppose D(CODE (D)) doesn't halt.
Then, we must be in the first case of the if

So, H(CODE (D), CODE (D)) is true. L
Which means D(CODE (D)) halts.

done

« We proved that there is no computer program that can solve
the Halting Problem.

— There was nothing special about Java* [Church-Turing thesis]

 This tells us that there is no compiler that can check our
programs and guarantee to find any infinite loops they might
have.

connection to diagonalization

<P,> <P,> <P,> <P,> <P.> <P.> ... Some possible inputs x

programs P
O U U U U U U U U

O o N o o Ao W ~hp =

O 1 1 0 1 1

OFRPFRPOORPR
P ORRPRRFLROR
P RPORRLRELRO
P RPORFROOLR
P OOREFLROO
OOFRFPROOR
P ORRPRRFRPRORLER
RPOOORrRLROOO
OOFrRrROO0OO0OR
P ORFRPROFROLR
OFRRFRPFRPORPR

(P,x) entry is 1 if program P halts on input x
and 0 if it runs forever

O 0 1..

connection to diagonalization

<P,> <P,> <P,> <P,> <P.> <P.> ... Some possible inputs x

programs P
O U U U U U U U U

O o N o o Ao W ~hp =

ol1 121 01 121 0 O O 1..
1 120 1 0 11 0 1 1 1
1 0 9 00 00O O O 0 1
o 1 1 01 01 1 0 1 O
0 1 1 1 19 1 1 0 0 0 1
1 1.0 oo 11 0 1 1 1
1 0 1 1 0 oo 0o 0 0 1
0 1 1 1 1 01 19 o0 1 o

(P,x) entry is 1 if program P halts on input x
and 0 if it runs forever

reductions

- Can use undecidability of the halting problem to show that other

problems are undecidable.

For instance:
EQUIV(P,Q): Trueif P(x) = Q(x) for every input x
False otherwise

Rice’'s theorem

Not every problem on programs is undecidable!
Which of these is decidable?

 Input CODE(P) and x
Output: true if P prints “ERROR" on input x
after less than 100 steps
false otherwise

 |nput CODE(P) and x
Output: true if P prints “ERROR" on input x
after more than 100 steps
false otherwise

Compilers Suck Theorem (informal):
Any “non-trivial” property the input-output behavior of Java
programs is undecidable.

